From 1 - 10 / 69
  • The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey covers an area of 74,000 km2 from Darwin to Katherine in the Northern Territory which hosts several world class deposits, including the Ranger Uranium Mine, Nabarlek, Mt Todd, Moline and Cosmo Howley. Aimed at regional mapping, uranium exploration, reducing exploration risk and promoting exploration activity, the program worked closely with industry partners to infill wide regional line spacing (5km) with deposit scale line spacing (less than 1km). The survey results are relevant in exploration for a variety of commodities and resources, including uranium, copper, lead, zinc, gold, nickel and groundwater. Geoscience Australia's interpretation products include sample-by-sample layered earth inversion products comprising located data, geo-located conductivity depth sections, depth slice grids, elevation slice grids, inversion report and an interpretation report. All data and products are available from GA as well as the Northern Territory Geological Survey Geophysical Image Web Server.

  • Summary of last 12 months activity in Acreage Release Area.

  • A newsletter to Project Stakeholders to inform of progress and future events

  • The Australian Solar Energy Information System V3.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V3.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V3.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2013 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2013 - Australian Hourly Solar Exposure Gridded Data now ranges from 1990 to 2012 ASEIS V3.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region against the distance to the closest transmission powerline.

  • A newsletter to Project Stakeholders to inform of progress and future events

  • Presentation delivered on 8 March 2012 at the Tasman Frontier Petroleum Industry Workshop, Geoscience Australia, Canberra.

  • Currently it is difficult to assess the quality of Australian geothermal exploration targets, particularly for those with differing amounts of geological data. To rectify this, Geoscience Australia is developing a tool for evaluating geothermal potential across the continent and for identifying areas that warrant additional investigation. An important first step in the development of this tool is synthetic thermal modelling. Synthetic modelling has been used to perform a sensitivity analysis, determine the importance of different geothermal parameters and the values necessary to produce specific temperatures at depth. The results of this work are presented in this abastract.

  • The Australian Solar Energy Information System V2.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V2.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V2.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2012 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2011 ASEIS V2.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region the distance and bearing angle to the closest transmission powerline.

  • Hydrogeological assessment of the Maryborough Basin, submitted as an abstract for the 2013 IAH Congress.

  • High voltage transmission towers are key linear assets that supply electricity to communities and key industries and are constantly exposed to wind effects where they traverse steep topography or open terrain. Lattice type high voltage transmission towers are highly optimised structures to minimise cost and reserve strength at design wind speeds (Albermani and Kitipornchai, 2003). The structures are tested under static loading conditions for specified load cases at the design stage. However, the interconnected nature of the lattice towers and conductors present a complex response under dynamic wind loading in service (Fujimura, el.al., 2007). The transmission tower's survival under severe wind and additional load transfer due to collapse of its neighbours is difficult to assess through modelling. Furthermore, the lack of data in the industry doesn't allow for a probabilistic analysis based on history (Abdallah, et.al., 2008). Hence, there is a need for developing an alternative methodology for analysing transmission tower collapse and survival of transmission lines subjected to cyclonic winds utilising design information, limited field data and industry expertise.