From 1 - 10 / 620
  • This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight-year, $225m investment by the Australian Government. The Darling-Curnamona-Delamerian (DCD) 2D reflection seismic survey was acquired during May to August 2022 in the Delamerian Orogen, the Murray-Darling basin, the Curnamona Province, and the upper Darling River floodplain regions in South Australia, Victoria and New South Wales. This project is a collaboration between Geoscience Australia (GA), the Geological Survey of South Australia (GSSA), the Geological Survey of Victoria (GSV) and the Geological Survey of New South Wales (GSNSW) and was funded by the Australian Government’s Exploring for the Future (EFTF) program. The overall objective of the EFTF Darling-Curnamona-Delamerian project is to improve the understanding of mineral and groundwater resources of the Curnamona Province and Delamerian Orogen and overlying basin systems through acquisition and interpretation of new pre-competitive geoscience data sets. The total length of acquisition was 1256 km distributed over five deep crustal 2D reflection seismic lines 22GA-DL1 (446 km), 22GA-DL2 (249 km), 22GA-CD1 (287 km), 22GA-CD2 (178 km), 22GA-CD3 (39.5 km) to image deep crustal structures, and a high-resolution 2D reflection seismic line 22GA-UDF (56 km) to explore groundwater resources. The DL lines provide coverage of fundamental geophysical data over the Flinders Range, the Delamerian Province and the Murray-Darling basin region in eastern South Australia and Victoria. The CD lines extend through the Curnamona Province and into the Darling Basin. The UDF line will assist with refining the hydrogeological model, understanding groundwater dynamics, and locating areas better suited to groundwater bores for better quality groundwater in the upper Darling River floodplain area. The data processing was performed by a contractor under the supervision of Geoscience Australia. The five deep crustal lines (22GA-DL1,DL2,CD1,CD2,CD3) were processed with record lengths of 20 and 8 seconds, while the shallow high-resolution line (22GA-UDF) was processed at a 4 second length. This processing yielded DMO Stack, Post-Stack Time Migration, and Pre-Stack Time Migration products. <strong>Raw shot gathers and processed gathers for this survey are available on request from clientservices@ga.gov.au - Quote eCat# 147423</strong>

  • The Groundwater Dependent Waterbodies (GDW) dataset is a subset of the Digital Earth Australia (DEA) Waterbodies product that has been combined with the Bureau of Meteorology’s national Groundwater Dependent Ecosystem (GDE) Atlas to produce surface waterbodies that are known/high potential aquatic GDEs. These aquatic GDEs include springs, rivers, lakes and wetlands. Where known/high potential GDEs intersected a DEA waterbody, the entire DEA waterbody polygon was retained and assigned as a GDW. Additional attributes were added to the waterbody polygons to indicate amount of overlap the waterbody had with the GDE(s) as well as the minimum, mean, median and maximum percentage of time that water has been detected in each GDW relative to the total number of clear observations (1986 to present). This web service will display a variety of layers with spatial summary statistics of the GDW dataset. These provide a first-pass representation of known/high potential aquatic GDEs and their surface water persistence, derived consistently from Landsat satellite imagery across Australia.

  • The Geoscience Australia Geological Observations and Samples database contains locations, geological observations, and descriptions of physical samples (specimens) from field sites, measured sections and boreholes associated with Geoscience Australia geological mapping surveys in Australia, its surrounds, and Antarctica since the 1960's. Descriptions include information on lithology, stratigraphy, alteration, structural measurements, and many other geological attributes.

  • This report presents a summary of the groundwater hydrochemistry data release from the Alice Springs project conducted as part of Exploring for the Future (EFTF). This data release records the groundwater sample collection methods and hydrochemistry and isotope data from monitoring bores in the Alice Springs project area, Northern Territory (NT). The Alice Springs project is a collaborative study between Geoscience Australia and the NT Government. Hydrochemistry and isotope data were collected from existing and newly drilled bores in the Alice Springs area.

  • Salinity of groundwater directly affects its suitability for different uses, including human consumption, stock water, agricultural use, and mineral or energy extraction. Traditionally, direct measurements of groundwater salinity at monitoring bores that intersect an aquifer have been used to map the spatial distribution of groundwater salinity. However, drilling is a logistically and economically challenging task, and we are usually left with a sparse set of measurements from which to infer groundwater salinity over large spatial extents. Airborne electromagnetic (AEM) sounding provides a solution to this problem. This is because AEM can be flown rapidly and cost-effectively over large swathes of land, and high subsurface bulk conductivities inferred from the AEM are well correlated with groundwater salinity in porous aquifers. We present here a methodology and case study from the Keep River Plains in the Northern Territory that provides information for land and watershed managers about the confidence with which salinity can be mapped over large areas using AEM. Extensive pore fluid sampling of the saturated zone, which lies beneath the watertable, enables this workflow to be used effectively. The results provided by our method can feed into decision making while accounting for uncertainty, enabling remote communities to manage their land and water resources effectively. <b>Citation:</b> Symington, N.,Ray, A., Harris-Pascal, C., Tan, K.P., Ley-Cooper, A.Y., and Brodie, R.C., 2020. Groundwater salinity estimation using borehole and AEM data: a framework for uncertainty analysis. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Geoscience Australia is increasingly looking to quantify the impact and value of the scientific work that it undertakes. Quantifying impact helps to demonstrate the return on investment from expenditure of government funds in applying geoscience to Australia's most important challenges. Recent analysis has quantified the economic and social benefits arising from precompetitive geoscience under Exploring for the Future, an Australian Government program led by Geoscience Australia that is dedicated to exploring Australia's resource potential and boosting investment. This analysis used the Impact Pathway approach to collect data and information that provides evidence of project and program impacts. The analysis demonstrates that Exploring for the Future is likely to return hundreds of dollars to the Australian economy for every dollar spent on the program. Additional modelling using REMPLAN online analytical tools helps to quantify economic and employment benefits in regional Australia. These approaches to impact assessment are also being adopted across Geoscience Australia in areas ranging from satellite Earth observation to earthquake and tsunami hazard and risk.

  • The hyperspectral HyLoggerTM instrument for collecting high resolution spectra data of drill core and drilling chips is a widely used and powerful in mineral and energy exploration, including sediment hosted mineralisation and hydrocarbons. It enables mapping of hydrothermal, diagenetic, and weathering assemblages, clarification of stratigraphy, and determination of primary mineralogy. This report presents key results of hyperspectral data from the HyLogger-3TM instrument collected from drilling in the Southern Stuart Corridor (SSC) project area in the Northern Territory conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The results show that HyLogger plots are in most cases in the most effective means of identification of stratigraphic contacts. HyLogger plots are also especially effective and determining the depth and mineralogy of weathering and distinguishing provenance in shallow transported material such as palaeovalley fill and alluvium. Geological observations are however still crucial, especially in determining texture, which cannot be determined by the HyLogger scans or from photographs of chips and core, and in cases where contamination obscures or confuses the spectral signals. Weathering in the SSC can be determined by the appearance of dickite and poorly crystalline kaolinite. This allows a better determination of base of weathering than visual means: generally based of the presence of oxidised iron phases such as goethite and haematite (which are not definitive where the rocks already contained these prior to weathering), or where oxidised iron deposition has not occurred. This aids in depth of weathering mapping from regional AEM data. The ability of the HyLogger to discriminate between swelling (montmorillonite) and non-swelling (kaolinite, dickite) clays is potentially significant in the prediction of aquifer properties and the validation of borehole MR methods. The detection of zones of potential dolomitisation and dedolomisation through mineralogy (presence of dolomite and possible secondary calcite and magnesite, respectively) in carbonate units has the potential to similarly predict properties in carbonate units, through the potential increase in porosity/permeability of the first and decreased porosity/permeability of the second.

  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 2 - 16th August talks included: Highways to Discovery and Understanding Session AusAEM - Unraveling Australia's Landscape with Airborne Electromagnetics – Dr Yusen Ley Cooper Exploring for the Future Data Discovery Portal: A scenic tour – Simon van der Wielen Towards equitable access to regional geoscience information– Dr Kathryn Waltenberg Community engagement and geoscience knowledge sharing: towards inclusive national data and knowledge provision – Dr Meredith Orr Foundational Geoscience Session The power of national scale geological mapping – Dr Eloise Beyer New surface mineralogical and geochemical maps of Australia – Dr Patrice de Caritat Imaging Australia’s Lithospheric Architecture – Dr Babak Hejrani Metallogenic Potential of the Delamerian Margin– Dr Yanbo Cheng You can access the recording of the talks from YouTube here: <a href="https://youtu.be/ZPp2sv2nuXI">2023 Showcase Day 2 - Part 1</a> <a href="https://youtu.be/dvqP8Z5yVtY">2023 Showcase Day 2 - Part 2</a>

  • This Record documents the efforts of the Geological Survey of Victoria (GSV) and Geoscience Australia (GA) in compiling a geochronology (age) compilation for Victoria, describing both the dataset itself and the process by which it is incorporated into the continental-scale Isotopic Atlas of Australia. The Isotopic Atlas draws together age and isotopic data from across the country and provides visualisations and tools to enable non-experts to extract maximum value from these datasets. Data is added to the Isotopic Atlas in a staged approach with priorities determined by GA- and partner-driven focus regions and research questions. This dataset, which was primarily compiled by GSV and has been supplemented with data compiled by GA during the 2013–2017 Stavely Project, is a foundation for the second phase of the Exploring for the Future initiative over 2020–2024, particularly the Darling-Curnamona-Delamerian Project.