From 1 - 10 / 91
  • High-CO2 gas fields serve as important analogues for understanding various processes related to CO2 injection and storage. The chemical signatures, both within the fluids and the solid phases, are especially useful for elucidating preferred gas migration pathways and also for assessing the relative importance of mineral dissolution and/or solution trapping efficiency. In this paper, we present a high resolution study focused on the Gorgon gas field and associated Rankin trend gases on Australia's Northwest Shelf of Australia. The gas data we present here display correlate-able trends for mole %-CO2 and %C CO2 both areally and vertically. Generally, CO2 % decreases and becomes depleted in %C (lighter) upsection and towards the north; a trend which also holds true for the greater Rankin trend gases in general. The strong spatial variation of CO2 content and %C and the interrelationship between the two suggests that processes were active to alter the two in tandem. We propose that these variations were driven by the precipitation of a carbonate phase, namely siderite, which is observed as a common late stage mineral. This conclusion is based on Rayleigh distillation modeling together with bulk rock isotopic analyses of core, which confirms that CO2 in gases are genetically related to the late stage carbonate cements. The results from this study have important implications for carbon storage operations and suggest that significant CO2 may be reacted out a gas plume over short migration distances.

  • High-CO2 gas fields serve as important analogues for understanding various processes related to CO2 injection and storage. The chemical signatures, both within the fluids and the solid phases, are especially useful for elucidating preferred gas migration pathways and also for assessing the relative importance of mineral dissolution and/or solution trapping efficiency. In this paper, we present a high resolution study focused on the Gorgon gas field and associated Rankin trend gases on Australia's Northwest Shelf of Australia. The gas data we present here display correlate-able trends for mole %-CO2 and %- C CO2 both areally and vertically. Generally, CO2 mol % decreases and becomes depleted in %- C (lighter) upsection and towards the north; a trend which also holds true for the greater Rankin trend gases in general. The strong spatial variation of CO2 content and %- C and the interrelationship between the two suggests that processes were active to alter the two in tandem. We propose that these variations were driven by the precipitation of a carbonate phase, namely siderite, which is observed as a common late stage mineral. This conclusion is based on Rayleigh distillation modeling together with bulk rock isotopic analyses of core, which confirms that CO2 in gases are genetically related to the late stage carbonate cements. The results from this study have important implications for carbon storage operations and suggest that significant CO2 may be reacted out a gas plume over short migration distances.

  • Australia has become the first country to offer commercial offshore acreage for the purpose of storing greenhouse gases in geological formations. Ten offshore areas in five basins/sub-basins are open for applications for Assessment Permits, which will allow exploration in those areas for suitable geological formations and conditions for storage of greenhouse gases (predominantly CO2). The acreage was released on the 27th March 2009 under the Offshore Petroleum and Greenhouse Gas Storage Act 2006. The acreage release is modelled on Australia's annual Offshore Petroleum Acreage Release; applicants can apply for an Assessment Permit for any of the ten areas, which is approximately equivalent to an exploration permit in petroleum terms. Applications will be assessed on a work-bid basis and other selection criteria outlined in the Regulations and Guidance Notes for Applicants. Following the assessment period, project proponents may apply for an injection license (equivalent to a production license in the petroleum industry) to inject and store greenhouse gas substances in the permit area. The areas offered in this first round of Acreage Release include five areas located within the Gippsland and Otway basins, offshore Victoria and South Australia, and the other five areas are located in the Vlaming and Petrel sub-basins, offshore Western Australia and the Northern Territory. The offshore areas offered for GHG geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances.

  • Quantification of leakage into the atmosphere from geologically stored CO2 is achievable by means of atmospheric monitoring techniques if the position of the leak can be located and the perturbation above the background concentration is sufficiently large for discrimination. Geoscience Australia and the CO2CRC have recently constructed a site in northern Canberra for the controlled release of greenhouse gases. This facility enables the simulation of leak events and provides an opportunity to investigate techniques for the detection and quantification of emissions of CO2 (and other greenhouse gases) into the atmosphere under controlled conditions. The facility is modelled on the ZERT controlled release facility in Montana. The first phase of the installation is complete and has supported an above ground, point source, release experiment (e.g. simulating leakage from a compromised well). Phase 2 involves the installation of a shallow underground horizontal well for line source CO2 release experiments and this will be installed during the first half of 2011. A release experiment was conducted at the site to explore the application of a technique, termed atmospheric tomography, to simultaneously determine the location and emission rate of a leak when both are unknown. The technique was applied to the release of two gas species, N2O and CO2, with continuous sampling of atmospheric trace gas concentrations from 8 locations 20m distant from a central release point and measurement of atmospheric turbulence and dispersive conditions. The release rate was 1.10 ± 0.02 g min-1 for N2O and 58.5 ± 0.4 g min-1 for CO2 (equivalent to 30.7 ± 0.2 tonnes CO2 yr-1). Localisation using both release species occurred within 0.5 m (2% error) of the known location. Determination of emission rate was possible to within 7% for CO2 and 5% for N2O.

  • The Australian Government, through the Department of Resources, Energy and Tourism, has supported Geoscience Australia in undertaking a series of regional-scale, geological studies to assess the CO2 storage potential of sedimentary basins, including the Petrel Sub-basin. The studies form part of the National Low Emissions Coal Initiative designed to accelerate the development of CO2 transport and storage infrastructure near the sources of major energy and industrial emissions. The Petrel Sub-basin was identified as a high-priority region for a future pre-competitive work program by the national Carbon Storage Taskforce. The Carbon Storage Taskforce also recommended the release of greenhouse gas assessment permits, which were released within the Petrel Sub-basin in 2009. As a component of the studies at Geoscience Australia, the numerical simulation was hypothetically designed to dynamically model the reservoir behavior and CO2 migration during the injection and post-injection stages using an in-house built 3D geological model of a represented injection site. 14 million tonnes per annum (MTPA) of CO2 was injected into the lower Frigate/Elang/Plover reservoir over 30 years and CO2 plume migration was simulated up to 2,000 years from the initial injection. The injection rate of 14 MTPA of CO2 used in this study was based on the predicted 2020 CO2 emissions of the Darwin Hub, a figure defined by the Carbon Storage Taskforce (2009). The poster highlights the simulation results including CO2 plume migration distance, CO2 trapping mechanisms and reservoir pressure behavior.

  • In July 2010 Geoscience Australia and CSIRO Marine & Atmospheric Research jointly commissioned a new atmospheric composition monitoring station (' Arcturus') in central Queensland. The facility is designed as a proto-type remotely operated `baseline monitoring station' such as could be deployed in areas that are likely targets for commercial scale carbon capture and geological storage (CCS). It is envisaged that such a station could act as a high quality reference point for later in-fill, site based, atmospheric monitoring associated with geological storage of CO2. The station uses two wavelength scanned cavity ringdown instruments to measure concentrations of carbon dioxide (CO2), methane (CH4), water vapour and the isotopic signature (?13C) of CO2. Meteorological parameters such as wind speed and wind direction are also measured. In combination with CSIRO's TAPM (The Air Pollution Model), data will be used to understand the local variations in CO2 and CH4 and the contributions of natural and anthropogenic sources in the area to this variability. The site is located in a region that supports cropping, grazing, cattle feedlotting, coal mining and gas production activities, which may be associated with fluxes of CO2 and CH4. We present in this paper some of the challenges found during the installation and operation of the station in a remote, sub-tropical environment and how these were resolved. We will also present the first results from the site coupled with preliminary modelling of the relative contribution of large point source anthropogenic emissions and their contribution to the background.

  • Between 2009 and 2012, Australia and China successfully completed the first phase of a bilateral project that aimed to build capacity in the area of geological storage of carbon dioxide among Chinese researchers, students, policy makers and professionals from academia, government and industry. This paper details the activities and results of the International CCS CAGS project, Phase I.

  • Phase two of the China Australia Geological Storage of CO2 (CAGS2) project aimed to build on the success of the previous CAGS project and promote capacity building, training opportunities and share expertise on the geological storage of CO2. The project was led by Geoscience Australia (GA) and China's Ministry of Science and Technology (MOST) through the Administrative Centre for China's Agenda 21 (ACCA21). CAGS2 has successfully completed all planned activities including three workshops, two carbon capture and storage (CCS) training schools, five research projects focusing on different aspects of the geological storage of CO2, and ten researcher exchanges to China and Australia. The project received favourable feedback from project partners and participants in CAGS activities and there is a strong desire from the Chinese government and Chinese researchers to continue the collaboration. The project can be considered a highly successful demonstration of bi-lateral cooperation between the Australian and Chinese governments. Through the technical workshops, training schools, exchange programs, and research projects, CAGS2 has facilitated and supported on-going collaboration between many research institutions and industry in Australia and China. More than 150 experts, young researchers and college students, from over 30 organisations, participated in CAGS2. The opportunity to interact with Australian and international experts at CAGS hosted workshops and schools was appreciated by the participants, many of whom do not get the opportunity to attend international conferences. Feedback from a CAGS impact survey found that the workshops and schools inspired many researchers and students to pursue geological storage research. The scientific exchanges proved effective and often fostered further engagement between Chinese and Australian researchers and their host organisations. The research projects often acted as a catalyst for attracting additional CCS funding (at least A$700,000), including two projects funded under the China Clean Development Mechanism Fund. CAGS sponsored research led to reports, international conference presentations, and Chinese and international journal papers. CAGS has established a network of key CCS/CCUS (carbon capture, utilisation and storage) researchers in China and Australia. This is exemplified by the fact that 4 of the 6 experts that provided input on the 'storage section' of the 12th Five-Year plan for Scientific and Technological Development of Carbon Capture, Utilization and Storage, which laid out the technical policy priorities for R&D and demonstration of CCUS technology in China, were CAGS affiliated researchers. The contributions of CAGS to China's capacity building and policy CCUS has been acknowledged by the Chinese Government. CAGS support of young Chinese researchers is particularly noted and well regarded. Letters have been sent to the Secretary of the Department of Industry and Science and to the Deputy CEO of Geoscience Australia, expressing China's gratitude for the Australian Government's support and GA's cooperation in the CAGS project.

  • Total contribution of six recently discovered submerged coral reefs in northern Australia to Holocene neritic CaCO3, CO2, and C is assessed to address a gap in global budgets. CaCO3 production for the reef framework and inter-reefal deposits is 0.26-0.28 Mt which yields 2.36-2.72 x105 mol yr-1 over the mid- to late-Holocene (<10.5 kyr BP); the period in which the reefs have been active. Holocene CO2 and C production is 0.14-0.16 Mt and 0.06-0.07 Mt, yielding 3.23-3.71 and 5.32-6.12 x105 mol yr-1, respectively. Coral and coralline algae are the dominant sources of Holocene CaCO3 although foraminifers and molluscs are the dominant constituents of inter-reefal deposits. The total amount of Holocene neritic CaCO3 produced by the six submerged coral reefs is several orders of magnitude smaller than that calculated using accepted CaCO3 production values because of very low production, a 'give-up' growth history, and presumed significant dissolution and exports. Total global contribution of submerged reefs to Holocene neritic CaCO3 is estimated to be 0.26-0.62 Gt or 2.55-6.17 x108 mol yr-1, which yields 0.15-0.37 Gt CO2 (3.48-8.42 x108 mol yr-1) and 0.07-0.17 Gt C (5.74-13.99 x108 mol yr-1). Contributions from submerged coral reefs in Australia are estimated to be 0.05 Gt CaCO3 (0.48 x108 mol yr-1), 0.03 Gt CO2 (0.65 x108 mol yr-1), and 0.01 Gt C (1.08 x108 mol yr-1) for an emergent reef area of 47.9 x103 km2. The dilemma remains that the global area and CaCO3 mass of submerged coral reefs are currently unknown. It is inevitable that many more submerged coral reefs will be found. Our findings imply that submerged coral reefs are a small but fundamental source of Holocene neritic CaCO3, CO2, and C that is poorly-quantified for global budgets.

  • The CO2CRC Otway Project in southwestern Victoria, Australia has injected over 17 months 65 445 tonnes of a mixed carbon dioxide-methane fluid into the water leg of a depleted natural gas reservoir at a depth of approximately 2km. Pressurized sub-surface fluids were collected from the Naylor-1 observation well using a tri-level U-tube sampling system located near the crest of the fault-bounded anticline trap, 300 metres up-dip of the CRC-1 gas injection well. Relative to the pre-injection gas-water contact (GWC), only the shallowest U-tube initially accessed the residual methane gas cap. The pre-injection gas cap at Naylor-1 contains CO<sub>2</sub> at 1.5 mol% compared to 75.4 mol% for the injected gas from the Buttress-1 supply well and its CO<sub>2</sub> is depleted in <sup>13</sup>C by 4.5%<sub>0</sub> VPDB compared to the injected supercritical CO<Sub>2</sub>. Additional assurance of the arrival of injected gas at the observation well is provided by the use of the added tracer compounds, CD<sub>4</sub>, Kr and SF<sub>6</sub> in the injected gas stream. Lessons learnt from the CO2CRC Otway Project have enabled us to better anticipate the challenges for rapid deployment of carbon dioxide in a commercial environment at much larger scales.