From 1 - 10 / 23
  • 2009 Australian Strategic Plan for Earth Observations from Space from the Australian Academy of Science and Technological Sciences and Engineering (AAS-ATSE) which outlined the key issues and recommended a plan of action for the Earth Observations from Space community.

  • This folder contains the work related to Climate Future Tasmania project including hazard, risk calculation, standalone tool, management and reports etc.

  • Geoscience Australia and the CO2CRC have constructed a greenhouse gas controlled release facility at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The facility is designed to simulate surface emissions of CO2 from the soil into the atmosphere and is modelled on the ZERT controlled release facility in Montana. Injection of CO2 into the soil is via a 120 m long slotted HDPE pipe installed horizontally 2 m underground. An eddy covariance (EC) system was installed at Ginninderra during the first sub-surface release (March - June 2012). The EC system, which generated 15 minute averages using a 10 Hz sampling frequency, measured net radiation (as a function of upwelling and downwelling, solar and longwave radiation); wind speed and direction in 3 dimensions; CO2 and H2O concentration; and temperature and pressure. The EC system was installed to provide baseline atmospheric measurements and assess methods for quantifying CO2 leakages. The daily CO2 release rate was 100 kg/d. Here we report on the application of the CO2 emissions quantification method developed by Pan et al. (2010) for detecting and quantifying CO2 leakages using EC techniques. The approach seeks to isolate the CO2 leakage signal from the natural variation inherent in flux data, using a time-window splitting scheme, median filtering and scaling techniques. Results from application of the EC method at the Ginninderra site will be presented and modifications to the method and its limitations discussed. Pan, L.; Lewicki, J.L.; Oldenburg C.M.; and Fischer M.L., (2010). Time-window based filtering method for near-surface detection of leakage from geological carbon sequestration sites, Environmental Earth Sciences, 60, pp 359-369. Proceedings of the 2013 International Carbon Dioxide Conference - Beijing China

  • Abstract for a Poster for the CO2CRC Symposium 2013: Atmospheric tomography is a CO2 quantification and localisation technique that uses an array of sampling points and a Bayesian inversion method to solve for the location and magnitude of a CO2 leak. Knowledge of a normalized three-dimensional dispersion plume is required in order to accurately model a leak using many meteorological parameters. A previous small scale (~20 m) study using a high precision Fourier Transform Infrared found that the emission rate was determined to within 3% of the actual release rate and the localisation within 1 m of the correct position. The technique was applied during the CO2CRC Otway Stage 2B residual saturation and dissolution test in August-October 2011. A network of eight independent CO2 sensors (Vaisala GMP343 CO2 probes) were positioned at distances ranging from 154 to 473 m from the well. A 3D sonic anemometer within the measurement area collected wind turbulence data. The results of the study indicate that, through careful data processing, measurements from the reasonably inexpensive (but lower accuracy and lower precision) CO2 sensor array can provide useful data for the application of atmospheric tomography. Results have found that the low precision of the sensors over time becomes a problem due to sensor drift. A reference measurement of CO2 helps to resolve this problem and improves the perturbation signal during data processing. Preliminary inversion modeling results will be shown to show the best estimation of locating a CO2 leakage source for the Otway Stage 2B residual saturation and dissolution test. CO2CRC Symposium 2013, Hobart

  • 11-5413 The Probabilistic Volcanic Ash - Hazard Map movie describes how you construct a probabilistic hazard map for volcanic ash, using an example scenario from GA's volcanic ash modelling work in West Java, Indonesia. The target audience is other govt. agencies both national and international, and the general public. The 3.3 minute movie uses 3D Max animations and 2D affects, has narration and production music. The narration will also be done in Bahasa Indonesian, at a later date.

  • There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of '13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and baseline signals were evaluated and statistically compared to test for the presence of fugitive methane emissions. In addition, a time series model of the methane baseline was developed in order to generate alternative realizations of the baseline signal. These were used to provide measures of both the likelihood of detecting fugitive emissions at various emission levels and of the false alarm rate. Results of the statistical analysis and an indicative minimum fugitive methane emission rate that can be detected using a single monitoring station are presented. Poster presented at the American Geophysical Union meeting, December 2013, San Francisco

  • The CO2CRC has been leading the international development and application of atmospheric techniques for CO2 leak detection and quantification for CCS. CSIRO's atmospheric monitoring program at the CO2CRC Otway Project demonstrated world's leading practice for atmospheric monitoring at geological storage sites. The GA-CO2CRC Ginninderra controlled release facility has enabled development and testing of a new atmospheric tomography approach for accurately quantifying CO2 emissions using atmospheric techniques. A scaled-up version of the technique using an array of more cost effective (but less accurate) sensors was applied at a larger scale at the Otway Stage 2B controlled release. Additional techniques have been developed including data filtering to optimize the detection of emitted gases against the ecosystem background and Bayesian inverse modeling to locate and quantify a source. GA and CSIRO operate a joint baseline atmospheric station in the Bowen Basin and have been independently investigating the sensitivity of CO2 leak detection through coupling of measurements taken in a sub-tropical environment with simulated leakage events. An outcome from this body of work is the importance of good quality, calibrated measurements, a long baseline record and the development and application of techniques using atmospheric models for quantifying gaseous emissions from the ground to the atmosphere. These same measurement requirements and quantification techniques have direct application to fugitive methane emissions from open cut coal mines, coal seam gas, tight gas, and conventional gas emissions. Application is easier for methane: the background signal is lower, sensors are available at affordable cost, and the emissions are measureable now. The Bowen Basin site, for example, is detecting fugitive methane emitted from open cut coal mining activities tens of kilometres away. An example of the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated methane source will be presented.

  • The aim of the NPE10 exercise is the continuation of the multi - technology approach started with NPE09. For NPE10, a simulated release of radionuclides was the trigger for the scenario in which an REB-listed seismo-acoustic event with ML between 3.0 and 4.8 was the source. Assumptions made were: A single seismo-acoustic signal-generating underground detonation event with continuous leak of noble gas, radionuclide detections only from simulated release. Using atmospheric transport modelling the IDC identified 48 candidate seismo-acoustic events from data fusion of the seismo-acoustic REBs with radionuclide detections. We were able to reduce the number of candidate seismo-acoustic point sources from 48 to 2 by firstly rejecting events that did not appear consistently in the data fusion bulletins; secondly, reducing the time-window under consideration through analysis of xenon isotope ratios; and thirdly, by clustering the remaining earthquakes and aftershocks and applying forward tracking to these (clustered) candidate events, using the Hy-split and ARGOS modelling tools. The two candidate events that were not screened by RN analysis were Wyoming REB events 6797924 (23-Oct) and 6797555 (24-Oct). Event 6797555 was identified as an earthquake on the basis of depth (identification of candidate depth phases at five teleseismic stations); regional Pn/Lg and mb:Ms - all indicating an earthquake source. Event 6797924, however, was not screened and from our analysis would constitute a candidate event for an On-Site Inspection under the Treaty.

  • In July 2010, Geoscience Australia and CSIRO Marine & Atmospheric Research jointly commissioned a new atmospheric composition monitoring station, named Arcturus, in sub-tropical Queensland, Australia. The facility is designed as a proto-type remotely operated `baseline monitoring station' that could be deployed in areas that are likely targets for commercial scale geological storage of carbon dioxide. A key question, given the ecosystem and anthropogenic sources of CO2 in the region, and the absence of a 'clean-wind' sector baseline, is how large would a CO2 leak have to be from a geological storage site before it can be detected above the background CO2 signal? To address this, CO2 leak simulation modelling was performed for 1-year period using the coupled prognostic meteorological and air pollution model TAPM at various locations, emission rates and distances (1-10 km) from the station.

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release facility to simulate surface emissions of CO2 (and other greenhouse gases) from the soil into the atmosphere under controlled conditions. The facility is located at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The design of the facility is modelled on the ZERT controlled release facility in Montana. The facility is equipped with a 2.5 tonne liquid CO2 storage vessel, vaporiser and mass flow controller unit with a capacity for 6 individual metered CO2 gas streams (up to 600 kg/d capacity in total). Injection of CO2 into the soil is via a 120m long slotted HDPE pipe installed horizontally 2m underground. This is equipped with a packer system to partition the well into six CO2 injection chambers. The site is characterised by the presence of deep red and yellow podsolic soils with the subsoil containing mainly kaolinite and subdominant illite. Injection is above the water table. The choice of well orientation based upon the effects of various factors such as topography, wind direction, soil properties and ground water depth will be discussed. An above ground release experiment was conducted from July - October 2010 leading to the development of an atmospheric tomography technique for quantifying and locating CO2 emissions1. An overview of monitoring experiments conducted during the first subsurface release (January-March 2012), including application of the atmospheric tomography technique, soil flux surveys, microbiological surveys, and tracer studies, will be presented. Additional CO2 release experiments are planned for late 2012 and 2013. Poster presented at 11th Annual Conference on Carbon Capture Utilization & Sequestration, April 30 - May 3, 2012, Pittsburgh, Pennsylvania