From 1 - 10 / 179
  • <div>The Abbot Point to Hydrographers Passage bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the RV Escape during the period 6 Oct 2020 – 16 Mar 2021. This was a contracted survey conducted for the Australian Hydrographic Office by iXblue Pty Ltd as part of the Hydroscheme Industry Partnership Program. The survey area encompases a section of Two-Way Route from Abbot Point through Hydrographers Passage QLD. Bathymetry data was acquired using a Kongsberg EM 2040, and processed using QPS QINSy. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>

  • This resource includes bathymetry data acquired by Geoscience Australia bathymetry survey during the period of 21 September and 17 October 2011 onboard the RV Southern Surveyor using a Kongsberg Maritime EM300 multibeam sonar. The SS2011-V05/ GA-0332/20110018S bathymetry survey was led by Dr. Andrew Jones (Geoscience Australia). The primary objectives of the survey were to map the spatial distribution of seepage sites and characterise the nature of the seepage at these sites (gas vs oil, macroseepage vs microseepage; palaeo vs modern day seepage) on the basis of: acoustic signatures in the water column, shallow subsurface and on the seabed; geochemical signatures in rock and sediment samples and the water column; and biological signatures on the seabed. This dataset contains a 32 and 15m-resolution, 32-bit floating point GeoTIFF grid files of the bathymetry in the study area, derived from the processed EM300 bathymetry data, using CARIS HIPS and SIPS software. Those grids were projected to WGS84 UTM 49S and 50S. Vertical Datum: MSL This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Geoscience Australia conducted a marine seismic survey (GA-0349) over poorly defined areas of the Houtman sub-basin (part of the Perth basin) between 15th of November to the 23rd of January 2015. The aim was to acquire high quality, industry-standard precompetitive 2D seismic data, Multi-beam echo-sounder (MBES) off the coast of Western Australia. The new seismic data will supplement existing geological knowledge of the region, underpin petroleum prospectivity evaluation and support the discovery of new oil gas resources.<p><p>This dataset is not to be used for navigational purposes.

  • This resource includes bathymetry data acquired during the Bunurong Marine National Park bathymetry survey acquired by Deakin University Marine Mapping Lab during the period of 14 – 16 June and 21 – 22 September 2017 onboard the MV Yolla using a Kongsberg Maritime EM2040C multibeam sonar. The Bunurong Marine National Park bathymetry survey was led by Dr. Daniel Ierodiaconou (Deakin University). The survey was part of a Parks Victoria project to better understand the habitats and associated biodiversity of Bunurong Marine National Park. This dataset contains a 2m-resolution 32-bit floating point geotiff file of the bathymetry in the study area, derived from the processed EM2040C bathymetry data, using CARIS HIPS and SIPS software. A detailed report on the survey is provided in: Young M, Porskamp P, Murfitt S, Wines S, Tinkler P, Bursic, J., Allan B, Howe S, Whitmarsh S, Pocklington J, Ierodiaconou D 2021. Baseline habitat mapping and enhanced monitoring trials of subtidal and intertidal reef habitats in Victoria’s marine national parks and sanctuaries. Parks Victoria Technical Series 116. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • The GMRT-AusSeabed project aims to address the cost associated with processing, merging and reformatting of bathymetric data in marine modelling and management. This will be achieved by adopting and expanding the Global Multi-Resolution Topography Synthesis (GMRT) tool and becoming a local platform node focused on Australia’s region of marine responsibility. The GMRT is operated by Lamont Doherty Earth Observatory and funded by the US National Science Foundation. The implementation of GMRT for Australia is supported by funding from the Australian Research Data Commons (ARDC). One of the main deliverables for the project is a user needs analysis, which will inform the design of the platform. This report presents a summary of the outcomes of the engagement with the ocean and coastal modelling community to ensure the solutions are fit-for-purpose. The initial project plan included a proposal for in-person workshop with the modelling community to establish user requirements, however COVID-19 restrictions were in place during the project and this was not possible. Instead, requirements were gathered from the community via an online survey. An overview of the survey questions and responses is presented in Section 2, while Section 3 provides some further analysis of the results and recommendations for the design of the new platform.

  • This resource includes bathymetry data acquired during the Shellharbour Tharawal marine survey collected by the NSW government (Department of Planning and Environment – DPE) during the period 25 May – 30 November 2017 onboard the RV Bombora using DPE’s R2Sonic 2022 multibeam sonar. The Shellharbour bathymetry survey was led by Dr. Bradley Morris (DPE Coasts and Marine) as part of SeabedNSW program funded by NSW Coastal Reforms package. The purpose of the project was to 1) provide a baseline dataset and 2) map the spatial distribution of seabed types. The data will provide a better understanding of nearshore sediment distribution/transport mechanisms for improved assessment of threats/risks associated with erosion events (i.e. East Coast Lows) and changing sea levels. This dataset contains a 32-bit floating point geotiff file of backscatter (5m gridded) for the study area, derived from the processed R2Sonic 2022 multibeam data, using Hypack, R2Sonic GUI, POSView, POSPac, Qimera and FMGT software. A detailed report on the survey is provided in: i) AusSeabed Survey Report and ii) NSW DPE Scientific Rigor Statement NSWENV_20171130_Shellharbour_MB_ScientificRigour.pdf. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the Senior Team Leader and the department’s Hydrosurveyor, Coasts and Marine Science, NSW Dept. Planning and Environment.

  • The GMRT-AusSeabed project aims to address the cost associated with processing, merging and reformatting of bathymetric data in marine modelling and management by enabling users to more easily create bathymetric maps. The project leverages two major existing initiatives, the AusSeabed Data Hub operated by AusSeabed and the Global Multi-Resolution Topography Synthesis (GMRT) operated by Lamont Doherty Earth Observatory (LDEO) and funded by the US National Science Foundation. GMRT-AusSeabed is seeking to deliver two core services that are relevant to this particular document: 1. Definition of an attributed point cloud for bathymetric data that is common across a wide range of bathymetric sensor platforms (multibeam echosounder, LiDAR, satellite, etc) 2. Develop additional user controls, primarily relating to data selection, that leverage the attributed point cloud for the creation of bathymetric maps. Within the bounds of the GMRT-AusSeabed project, this document provides: 1. A summary of the key points discussed within the second workshop, “Backend Storage”, 2. An overview of the toolkits being explored by the project for delivery of various capabilities 3. Outcomes and actions that are being moved forward with in the project. Workshop participants included representatives from Geoscience Australia, Australian Antarctic Division, University of Western Australia, and Guardian Geomatics. See <a href="https://www.ausseabed.gov.au/gmrt">https://www.ausseabed.gov.au/gmrt</a> for more information.

  • This resource includes bathymetry data acquired during the Tasmanian East Coast bathymetry survey collected by Institute for Marine and Antarctic Studies (IMAS) University of Tasmania (UTAS) during the period 12 – 23 April 2021 on the RV Abyss using a Kongsberg Maritime EM2040C multibeam sonar (contracted from CSIRO). The Tasmanian East Coast bathymetry survey was led by Dr. Vanessa Lucieer (IMAS). The purpose of the project was to map the fine-scale spatial distribution of key abalone habitat impacted by urchins in < 25 m water depth using multibeam acoustic imagery. This dataset contains seven 0.5m-resolution 32-bit floating point geotiff files of the bathymetry in study area and transits, derived from the processed EM2040C bathymetry data, using CARIS HIPS and SIPS software. A detailed report on the survey is provided in: Lucieer V, Keane J, Shelamoff V, Nau A, Ling S, Mapping abalone habitat impacted by Centrostephanus on the east coast of Tasmania: Final contracted report for the Abalone Industry Reinvestment Fund (AIRF Project 2021) and Tasmanian Climate Change Office (Climate Research Grants Program 2021), Institute for Marine and Antarctic Studies, UTAS, December (2021) [Contract Report] http://ecite.utas.edu.au/148298. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • The WA Margins Reconnaissance survey, GA-2476 was acquired during October 2008 to January 2009 onboard the RV Sonne as part of the Energy Security Program. Almost 230,000 km² of multibeam bathymetry was acquired over the duration of the survey including all transits. Seafloor features revealed by the backscatter and swath bathymetry have shown that geomorphology of the study areas is diverse. The continental slope of the west Australian margin study areas is characterised by large areas with numerous deeply incised canyons and areas with low-angle slumps and scarps mostly on the upper part of the slope. Other geomorphic features on the continental slope include short escarpments of local extent and small volcanic peaks over the Houtman Sub-basin part of the Perth margin. New bathymetry from the Cuvier Plateau has mapped large volcanic domes, some of them with terraces, ridges, a large previously unmapped valley and two large seamounts (newly named the Cuvier Seamount and the Wallaby seamount). The dataset contains eight XYZ grids of 100m resolution; colour tiff images shaded with sun azimuth 45 degrees and a geotiff of the entire survey with a depth legend to go with the images.<p><p>This dataset is not to be used for navigational purposes.

  • This resource includes bathymetry data acquired during the Tasman and Coral Seas survey using Kongsberg EM302 and EM710 multibeam sonar systems. The Tasman and Coral Seas bathymetry survey (FK201228/GA4868); also known as Pinging in the New Year: Mapping the Tasman and Coral Seas survey; was led by James Cook University and University of Queensland aboard the Schmidt Ocean Institute's research vessel Falkor from the 28th of December to the 25th of January 2021. The primary objective of the expedition was to map the seabed of the target area in the Tasman and Coral Seas that will support ocean research, management and sustainable economic development. Bathymetric maps are especially valuable for geoscience research, as the shape of the seafloor holds information about the tectonic movement and the formation of the Australian continent. Another objective was to survey seabirds, which are important indicators of ocean health and the data collected from the expedition are vital for informing management of the Coral Sea Marine Park. This V1 dataset contains one 64m resolution 32-bit floating point geotiff files of the Tasman and Coral Seas bathymetry survey area, derived from the processed EM302 and EM710 bathymetry data, using CARIS HIPS and SIPS software. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.