From 1 - 10 / 134
  • <div>The Abbot Point to Hydrographers Passage bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the RV Escape during the period 6 Oct 2020 – 16 Mar 2021. This was a contracted survey conducted for the Australian Hydrographic Office by iXblue Pty Ltd as part of the Hydroscheme Industry Partnership Program. The survey area encompases a section of Two-Way Route from Abbot Point through Hydrographers Passage QLD. Bathymetry data was acquired using a Kongsberg EM 2040, and processed using QPS QINSy. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>

  • This resource includes bathymetry data acquired by Geoscience Australia bathymetry survey during the period of 21 September and 17 October 2011 onboard the RV Southern Surveyor using a Kongsberg Maritime EM300 multibeam sonar. The SS2011-V05/ GA-0332/20110018S bathymetry survey was led by Dr. Andrew Jones (Geoscience Australia). The primary objectives of the survey were to map the spatial distribution of seepage sites and characterise the nature of the seepage at these sites (gas vs oil, macroseepage vs microseepage; palaeo vs modern day seepage) on the basis of: acoustic signatures in the water column, shallow subsurface and on the seabed; geochemical signatures in rock and sediment samples and the water column; and biological signatures on the seabed. This dataset contains a 32 and 15m-resolution, 32-bit floating point GeoTIFF grid files of the bathymetry in the study area, derived from the processed EM300 bathymetry data, using CARIS HIPS and SIPS software. Those grids were projected to WGS84 UTM 49S and 50S. Vertical Datum: MSL This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Geoscience Australia conducted a marine seismic survey (GA-0349) over poorly defined areas of the Houtman sub-basin (part of the Perth basin) between 15th of November to the 23rd of January 2015. The aim was to acquire high quality, industry-standard precompetitive 2D seismic data, Multi-beam echo-sounder (MBES) off the coast of Western Australia. The new seismic data will supplement existing geological knowledge of the region, underpin petroleum prospectivity evaluation and support the discovery of new oil gas resources.<p><p>This dataset is not to be used for navigational purposes.

  • This resource includes bathymetry data acquired during the Tasman and Coral Seas survey using Kongsberg EM302 and EM710 multibeam sonar systems. The Tasman and Coral Seas bathymetry survey (FK201228/GA4868); also known as Pinging in the New Year: Mapping the Tasman and Coral Seas survey; was led by James Cook University and University of Queensland aboard the Schmidt Ocean Institute's research vessel Falkor from the 28th of December to the 25th of January 2021. The primary objective of the expedition was to map the seabed of the target area in the Tasman and Coral Seas that will support ocean research, management and sustainable economic development. Bathymetric maps are especially valuable for geoscience research, as the shape of the seafloor holds information about the tectonic movement and the formation of the Australian continent. Another objective was to survey seabirds, which are important indicators of ocean health and the data collected from the expedition are vital for informing management of the Coral Sea Marine Park. This V1 dataset contains one 64m resolution 32-bit floating point geotiff files of the Tasman and Coral Seas bathymetry survey area, derived from the processed EM302 and EM710 bathymetry data, using CARIS HIPS and SIPS software. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • This resource includes bathymetry data acquired during the Vernon Islands bathymetry survey collected by University of Queensland during the period 21 – 26 May 2019 on the charter vessel Lauri-j using Bathyswath interferometric sonar system. The survey was undertaken as a project of the Australian Tidal Energy (AUSTEn; http://austen.org.au/) co-funded by the Australian Renewable Energy Agency (ARENA) for the Advancing Renewables Program. The purpose of the project was to map the country’s tidal energy resource in unprecedented detail and assess its economic feasibility and ability to contribute to Australia’s energy needs. It will aid the emerging tidal energy industry to develop commercial-scale tidal energy projects. This dataset contains a 4m resolution 32-bit floating point geotiff file of the bathymetry in study area and transits, derived from the processed Bathyswath interferometric data, using Fledermaus. A final report of the project is provided in: Penesis, I et al. 2020. Tidal Energy in Australia: Assessing Resource and Feasibility in Australia’s Future Energy Mix (https://tethys-engineering.pnnl.gov/sites/default/files/publications/tidal-energy-in-australia-2020.pdf). This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The dataset contains 8 bathymetry grids produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software. Please see the metadata informaiton for detailed information.

  • The Tasmante bathymetry survey, GA-0125 was acquired by Geoscience Australia onboard the IFREMER N/O L'Atalante from the 12th of February to the 28th of March 1994 using a Simrad EM12 Dual sonar system. The objectives of the west Tasmanian swath-mapping cruise (Tasmante) are to: determine the structure of the continental margin off west Tasmania, on the South Tasman Rise, and on the adjacent abyssal plain; examine the relationships between lithospheric extension in continental crust, the orientation of the seafloor spreading phases, and the formation of the transform margin along west Tasmania and the South Tasman Rise; map sedimentary patterns and processes to build an understanding of Neogene changes in sedimentation and their relationship to tectonic and climatic. This dataset contains a 100m resolution 32-bit geotiff of the Tasmante survey, produced from the processed EM12D bathymetry data of the survey area using the CARIS HIPS and SIPS software. This dataset is published with the permission of the CEO, Geoscience Australia. Not to be used for navigational purposes.

  • This dataset contains bathymetry products from the Lord Howe Rise 2D Seismic Survey undertaken by Geoscience Australia (GA) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) during the period from8 of November 2017 to1stJanuary 2018 onboard the RV Kairei (Survey KR1715C). The Lord Howe Rise (LHR) is a submerged plateau that extends from southwest New Caledonia to the west of New Zealand. Much of the LHR lies within the Australian marine jurisdiction at water depths of 1000-3000m. The Commonwealth conducted a scientific seismic survey over the Lord Howe Rise in 2017 in collaboration with JAMSTEC. This collaboration contributes to a larger research proposal submitted to the International Ocean Discovery Program (IODP) that would provide the first deep stratigraphic record for the Cretaceous Eastern Gondwana Margin. The IODP proposal, if funded, is to drill a deep stratigraphic well to a depth of 2-3 km below the seabed, possibly in 2020. In order to select the drill sites, GA and JAMSTEC are conducting site assessments that involve a seismic survey in 2016 and a geotechnical survey in 2017. Multibeam bathymetry data were acquired during the survey covering an area of 69,190 km2. Five bathymetry grids of 70 to 90m resolution were produced using the shipborne 12 KHz sonar system.<p><p>This dataset is not to be used for navigational purposes.

  • This resource includes bathymetry data acquired during the Northern Depths of the Great Barrier Reef survey on RV Falkor using its Kongsberg EM302 multibeam sonar system. The EM710 data acquired on this survey will be included in a future release. The primary objective of the survey was to explore the Cape York Peninsula region, through geophysical mapping of the shelf edge and continental slope adjacent to the barrier reefs and around the seven detached reefs lying north of Cape Weymouth, including within the large Wreck Bay. The offshore Cape York area is considered a frontier marine region with very little multibeam data collected previously in this far northern section of the Great Barrier Reef. The survey aimed to reveal the full inventory of submarine canyons, drowned reefs and any other significant seabed features in the region. A secondary objective was to conduct geophysical mapping of the Swain slide, an underwater landslide on the slope adjacent to the Swain Reefs in the southern Great Barrier Reef, with a headscarp about 10 km wide and a debris field extending ~20 km from the headscarp. The mapping aimed to reveal the full extent of the debris field and nature of the debris material proximal to the headscarp. Another objective was to conduct geophysical mapping around the steeper slopes around reefs in the eastern Coral Sea Marine Park, including the Saumarez, Frederick, Kenn, Wreck and Cato Reefs. The mapping aimed to fill data gaps between existing airborne LIDAR bathymetry over the shallow reefs and previously collected multibeam data around the steeper flanks. To achieve these objectives, the survey extended over 47 days, leaving Brisbane, Australia on September 30, 2020 and returning to Brisbane, Australia on November 17, 2020. The voyage was split into three legs, with port calls made at Cairns and Horn Island in the Torres Strait. Geophysical mapping involved the use of both Kongsberg EM302 and EM710 multibeam systems on the RV Falkor, typically operated in Dual Swath mode. In depths deeper than ~1200 m, the EM710 was turned off. Backscatter and water column data were also collected on both multibeam systems. This V1 dataset contains two 64m resolution 32-bit geotiff files of the FK200930 survey area produced from the processed EM302 only bathymetry data. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • This resource includes bathymetry data acquired during the Refuge Cove bathymetry survey acquired by Deakin University Marine Mapping Lab during the period of 07 – 11 June 2013 onboard the MV Yolla using a Kongsberg Maritime EM2040C multibeam sonar. The Refuge Cove bathymetry survey was led by Dr. Daniel Ierodiaconou (Deakin University). This dataset contains a 1m-resolution 32-bit floating point GeoTIFF file of the bathymetry in the study area, derived from the processed EM2040C bathymetry data, using CARIS HIPS and SIPS software. The elevation datum is shifted to EGM2008 at Geoscience Australia. Detailed information on this survey is provided in: Ierodiaconou, D., Schimel, A. C., Kennedy, D., Monk, J., Gaylard, G., Young, M., Diesing, M. & Rattray, A. (2018). Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters. Marine Geophysical Research, 39(1), 271-288. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.