tsunami
Type of resources
Keywords
Publication year
Topics
-
Diatom assemblages in sandy deposits of the 2004 tsunami at Phra Thong Island, Thailand may provide clues to flow conditions during the tsunami. The tsunami deposits contain one or more beds that fine upward, commonly from medium sand to silty very fine sand. Diatom assemblages of the lowermost portion of the deposit predominantly comprise of unbroken beach and subtidal species that live attached to sand grains. The dominant taxa shift to marine plankton species in the middle of the bed and to a mix of freshwater, brackish, and marine species near the top. These trends are consistent with expected changes in current velocities of tsunami through time. During high current velocities, medium sand is deposited; only beach and subtidal benthic diatoms attached to sediment can be incorporated into the tsunami deposit. High shear velocity keeps finer material, including planktonic diatoms in suspension. With decreasing current velocities, finer material including marine plankton can be deposited. Finally, during the lull between tsunami waves, the entrained freshwater, brackish, and marine species settle out with mud and plant trash. Low numbers of broken diatoms in the lower medium sand implies rapid entrainment and deposition, whilst selective breakage of marine plankton (Thalassionema nitzschioides, and Thalassiosira and Coscinodiscus spp.) in the middle portion of the deposit probably results from abrasion in the turbulent current before deposition.
-
Since the 2004 Sumatra-Andaman Earthquake, understanding the potential for tsunami impact on coastlines has become a high priority for Australia and other countries in the Asia-Pacific region. Tsunami warning systems have a need to rapidly assess the potential impact of specific events, and hazard assessments require an understanding of all potential events that might be of concern. Both of these needs can be addressed through numerical modelling, but there are often significant uncertainties associated with the three physical properties that culminate in tsunami impact: excitation, propagation and runup. This talk will focus on the first of these, and attempt to establish that seismic models of the tsunami source are adequate for rapidly and accurately establishing initial conditions for forecasting tsunami impacts at regional and teletsunami distances. Specifically, we derive fault slip models via inversion of teleseismic waveform data, and use these slip models to compute seafloor deformation that is used as the initial condition for tsunami propagation. The resulting tsunami waveforms are compared with observed waveforms recorded by ocean bottom pressure recorders (BPRs). We show that, at least for the large megathrust earthquakes that are the most frequent source of damaging tsunami, the open-ocean tsunami recorded by the BPRs are well predicted by the seismic source models. For smaller earthquakes, or those which occur on steeply dipping faults, however, the excitation and propagation of the resulting tsunami can be significantly influenced by 3D hydrodynamics and by dispersion, respectively. This makes it mode difficult to predict the tsunami waveforms.
-
Legacy product - no abstract available
-
The Natural Hazard Impacts Project (NHIP) at Geoscience Australia has developed modelling techniques that enable coastal inundation to be predicted during a tsunami. A Collaborative Research Agreement between Geoscience Australia and the Fire and Emergency Services Authority (FESA) was formed in 2005 to understand tsunami risk and inform emergency management in WA. Through this partnership a significant tsunami risk was identified in NW Western Australia, leading to the development of inundation models for several coastal communities in this region, including Onslow and Exmouth. Recognising the importance of this research to Geoscience Australia, FESA and the communities of Onslow and Exmouth, this year's graduate project was designed to assist the NHIP and to further strengthen ties with FESA and community organisations. The project had several distinct outcomes which can be divided into data acquisition and community interaction. High quality elevation data was gathered by GPS surveying in order to ascertain the quality of the Digital Elevation Model (DEM) that is currently used in inundation models. Improved accuracy in the elevation data allows the capture of subtle changes in topography that may not be present in the existing DEM and so may improve model accuracy. Secondly, ground-truthing of predicted inundation areas supplements the survey data, provides critical assistance in the production of accurate inundation models and potentially aids in the production of emergency plans. Prior to fieldwork a community-specific tsunami awareness brochure was designed and produced for Onslow. This brochure was presented to Onslow local emergency managers and FESA personnel, and subsequently to Emergency Management Australia and the Bureau of Meteorology. It has received widespread positive feedback, and consequently may provide a template for other community brochures in similarly vulnerable regions of Australia. Finally, graduates represented Geoscience Australia at several community meetings in Onslow where NHIP research was presented. These meetings provided insight into specific community concerns in the event of a tsunami and provided an opportunity for the attendees to ask questions about tsunamis and their impacts. Fortuitously this community interaction also led to the discovery of anecdotal evidence of past tsunami events in Onslow, including the tsunami triggered by the 1883 Krakatau eruption, a 1937 tsunami that may be attributed to an earthquake near Java, and the 1994 and 2004 tsunamis.
-
This cross agency report, highlights the areas of the central NSW continental slope prone to sediment mass wasting over time. It includes the critical factors which contribute to slope failure including basement geometry, angle of slope and thickness of overlying sediments. Evidence of slope failure are observed through: surficial tension cracks; creep features; faulting; redistribution of sediments, multiple relict slides on the sea floor and erosional surface scars.
-
The major tsunamis of the last few years have dramatically raised awareness of the possibility of potentially damaging tsunami reaching the shores of Australia and to the other countries in the region. Here we present three probabilistic hazard assessments for tsunami generated by megathrust earthquakes in the Indian, Pacific and southern Atlantic Oceans. One of the assessments was done for Australia, one covered the island nations in the Southwest Pacific and one was for all the countries surrounding the Indian Ocean Basin
-
The high risk of natural disasters in developing nations has considerable implications for international aid programs. Natural disasters can significantly compromise development progress and reduce the effectiveness of aid investments. In order to better understand the threat that natural disasters may pose to its development aid program, AusAID commissioned Geoscience Australia to conduct a broad natural hazard risk assessment of the Asia-Pacific region. The assessment included earthquake, volcanic eruption, tsunami, cyclone, flood, landslide and wildfire hazards, with particular attention given to countries the Australian Government considered to be of high priority to its development aid program. Geoscience Australia's preliminary natural hazard risk assessment of the region aimed to help AusAID identify countries and areas at high risk from one or more natural hazards. The frequency of a range of sudden-onset natural hazards was estimated and, allowing for data constraints, an evaluation was made of potential disaster impact. Extra emphasis was placed on relatively rare but high-impact events, such as the December 2004 tsunami, which might not be well documented in the historical record. While a detailed risk assessment was well beyond the scope of this study, it was recognized that some understanding of the potential impact of natural disasters could be achieved through the simple means of developing appropriate overlays of population and hazard. For example, given an estimate of the frequency and magnitude (VEI) at which volcanic eruptions in a certain region occur, the populations impacted could be roughly estimated by considering the average population close enough to a volcano to receive a significant impact from ash fall.
-
The tragic events of the Indian Ocean tsunami on 26 December 2004 highlighted the need for reliable and effective alert and response sysems for tsunami threat to Australian communities. Geoscience Australia has established collaborative partnerships with state and federal emergency management agencies to support better preparedness and to improve community awareness of tsunami risks.
-
The report summarises earthquake and tsunami information worldwide in 1997 but with a focus on Australia for use by scientists, engineers and the public. Maps of the seismicity are presented on a state-by-state basis and isoseismal maps are included for the significant earthquakes.
-
Tsunami inundation models are computationally intensive and require high resolution elevation data in the nearshore and coastal environment. In general this limits their practical application to scenario assessments at discrete communiteis. This study explores teh use of moderate resolution (250 m) bathymetry data to support computationally cheaper modelling to assess nearshore tsunami hazard. Comparison with high ersolution models using best available elevation data demonstrates that moderate resolution models are valid (errors in waveheight < 20%) at depths greater than 10m in areas of relatively low sloping, uniform shelf environments. However in steeper and more complex shelf environments they are only valid at depths of 20 m or greater. Modelled arrival times show much less sensitivity to data resolution compared with wave heights and current velocities. It is demonstrated that modelling using 250 m resoltuion data can be useful in assisting emergency managers and planners to prioritse communities for more detailed inundation modelling by reducing uncertainty surrounding the effects of shelf morphology on tsunami propagaion. However, it is not valid for modelling tsunami inundation. Further research is needed to define minimum elevation data requirements for modelling inundation and inform decisions to undertake acquisition of high quality elevaiton data collection.