2006
Type of resources
Keywords
Publication year
Scale
Topics
-
Geochronological constraints on tourmaline formation in the Western Fold Belt of the Mount Isa Inlier, Australia: Evidence for large-scale metamorphism at 1.57 Ga?
-
Decrepitation and degassing behaviour of quartz up to 1560 °C: Analysis of noble gases and halogens in complex fluid inclusion assemblages
-
At this scale 1cm on the map represents 1km on the ground. Each map covers a minimum area of 0.5 degrees longitude by 0.5 degrees latitude or about 54 kilometres by 54 kilometres. The contour interval is 20 metres. Many maps are supplemented by hill shading. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours, localities and some administrative boundaries. Product Specifications Coverage: Australia is covered by more than 3000 x 1:100 000 scale maps, of which 1600 have been published as printed maps. Unpublished maps are available as compilations. Currency: Ranges from 1961 to 2009. Average 1997. Coordinates: Geographical and either AMG or MGA coordinates. Datum: AGD66, GDA94; AHD Projection: Universal Transverse Mercator UTM. Medium: Printed maps: Paper, flat and folded copies. Compilations: Paper or film, flat copies only.
-
This dataset attempts to reflect the boundaries of claimant applications for Native Title as per the Register of Native Title Claims (s185, Native Title Act; Commonwealth). This is a national dataset but data is stored by jurisdiction (State), for ease of use. Applications stored for each jurisdiction dataset include applications which overlap into adjoining jurisdictions as well as applications which overlap with these. This dataset depicts the spatial record of registered claimant applications. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member assigned to the application. Applicants of registered applications have the Right To Negotiate (RTN) with respect to certain types of Future Acts over the area being claimed. Whilst applications that are determined are recorded on a separate register, all registered applications remain on the Register of Native Title Claims until otherwise finalised.
-
An array of northeast-trending shear zones in the north-west Gawler Craton of South Australia has been implicated in widely disparate Proterozoic continental reconstructions. These shear zones are interpreted to have formed in response to sinistral transpression, and dissect the north-west Gawler Craton into several geological domains, each with contrasting metamorphic histories. New 40Ar/39Ar data provide age constraints for movement along these shear zones, and are interpreted to indicate that the Karari, Tallacootra and Coorabie Shear Zones were last active at not, vert, similar1450 Ma. Despite distinct differences in metamorphic grade, the various geological domains bounded by shear zones exhibit evidence for commonality in event histories prior to deformation at not, vert, similar1450 Ma, albeit at different crustal levels. This is interpreted to indicate that deformation at not, vert, similar1450 Ma was responsible for reshuffling of crustal blocks that were already adjacent, rather than amalgamation of exotic terranes. The new data also provide additional evidence for a widespread metamorphic and deformational event at not, vert, similar1530-1550 Ma across the north-western Gawler Craton. The timing of deformation at not, vert, similar1450 is not, vert, similar100 Ma younger than suggested in several published tectonic reconstructions and, importantly, is also significantly older than Grenvillian-age tectonism in adjacent provinces to the west and north.
-
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
-
created to store file path
-
Australia's nickel sulfide industry has had a fluctuating history since the discovery in 1966 of massive sulfides at Kambalda in the Eastern Goldfields of Western Australia. Periods of buoyant nickel prices and high demand, speculative exploration, and frenetic investment (the 'nickel boom' years) have been interspersed by protracted periods of relatively depressed metal prices, exploration inactivity, and low discovery rates. Despite this unpredictable evolution, the industry has had a significant impact on the world nickel scene with Australia having a global resource of nickel metal from sulfide ores of not, vert, similar 12.9 Mt, five world-class deposits (> 1 Mt contained Ni), and a production status of number three after Russia and Canada. More than 90% of the nation's known global resources of nickel metal from sulfide sources were discovered during the relative short period of 1966 to 1973. Australia's nickel sulfide deposits are associated with ultramafic and/or mafic igneous rocks in three major geotectonic settings: (1) Archean komatiites emplaced in rift zones of granite-greenstone belts; (2) Precambrian tholeiitic mafic-ultramafic intrusions emplaced in rift zones of Archean cratons and Proterozoic orogens; and (3) hydrothermal-remobilized deposits of various ages and settings. The komatiitic association is economically by far the most important, accounting for more than 95% of the nation's identified nickel sulfide resources. The ages of Australian komatiitic- and tholeiitic-hosted deposits generally correlate with three major global-scale nickel-metallogenic events at not, vert, similar 3000 Ma, not, vert, similar 2700 Ma, and not, vert, similar 1900 Ma. These events are interpreted to correspond to periods of juvenile crustal growth and the development of large volumes of primitive komatiitic and tholeiitic magmas caused by large-scale mantle overturn and mantle plume activities. There is considerable potential for the further discovery of komatiite-hosted deposits in Archean granite-greenstone terranes including both large, and smaller high-grade (5 to 9% Ni) deposits, that may be enriched in PGEs (2 to 5 g/t), especially where the host ultramafic sequences are poorly exposed. Analysis of the major komatiite provinces of the world reveals that fertile komatiitic sequences are generally of late Archean (not, vert, similar 2700 Ma) or Paleoproterozoic (not, vert, similar 1900 Ma) age, have dominantly Al-undepleted (Al2O3/TiO2 = 15 to 25) chemical affinities, and often occur with sulfur-bearing country rocks in dynamic high-magma-flux environments, such as compound sheet flows with internal pathways facies (Kambalda-type) or dunitic compound sheet flow facies (Mt Keith-type). Most Precambrian provinces in Australia, particularly the Proterozoic orogenic belts, contain an abundance of sulfur-saturated tholeiitic mafic ± ultramafic intrusions that have not been fully investigated for their potential to host basal Ni-Cu sulfides (Voisey's Bay-type mineralization). The major exploration challenges for finding these deposits are to determine the pre-deformational geometries and younging directions of the intrusions, and to locate structural depressions in the basal contacts and feeder conduits under cover. Stratabound PGE-Ni-Cu ± Cr deposits hosted by large Archean-Proterozoic layered mafic-ultramafic intrusions (Munni Munni, Panton) of tholeiitic affinity have comparable global nickel resources to many komatiite deposits, but low-grades (< 0.2% Ni). There are also hydrothermal nickel sulfide deposits, including the unusual Avebury deposit in western Tasmania, and some potential for 'Noril'sk-type' Ni-Cu-PGE deposits associated with major flood basaltic provinces in western and northern Australia.
-
This dataset attempts to reflect the boundaries of claimant applications for Native Title as per the Register of Native Title Claims (s185, Native Title Act; Commonwealth). This is a national dataset but data is stored by jurisdiction (State), for ease of use. Applications stored for each jurisdiction dataset include applications which overlap into adjoining jurisdictions as well as applications which overlap with these. This dataset depicts the spatial record of registered claimant applications. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member assigned to the application. Applicants of registered applications have the Right To Negotiate (RTN) with respect to certain types of Future Acts over the area being claimed. Whilst applications that are determined are recorded on a separate register, all registered applications remain on the Register of Native Title Claims until otherwise finalised.
-
This dataset reflects the boundaries of claimant and nonclaimant native title applications that have been determined in part or in full, together with attribution about that determination. This dataset is stored nationally. The National Native Title Register (s192, Native Title Act, Commonwealth), is a register containing information about each determination of native title by the Federal or High Court or by a recognized State or Territory body. Determinations are categorized by both process and outcome. Process will be by consent, litigation or unopposed. Outcome will be that native title will have been found to exist in full or part, or been extinguished. Those determinations subject to appeal are also noted.