From 1 - 10 / 1028
  • At this scale 1cm on the map represents 1km on the ground. Each map covers a minimum area of 0.5 degrees longitude by 0.5 degrees latitude or about 54 kilometres by 54 kilometres. The contour interval is 20 metres. Many maps are supplemented by hill shading. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours, localities and some administrative boundaries. Product Specifications Coverage: Australia is covered by more than 3000 x 1:100 000 scale maps, of which 1600 have been published as printed maps. Unpublished maps are available as compilations. Currency: Ranges from 1961 to 2009. Average 1997. Coordinates: Geographical and either AMG or MGA coordinates. Datum: AGD66, GDA94; AHD Projection: Universal Transverse Mercator UTM. Medium: Printed maps: Paper, flat and folded copies. Compilations: Paper or film, flat copies only.

  • This map shows the boundary of the Maritime Security Zones for each port for the purpose of the Maritime Transport Office Security Act 2003. 4 sheets (Colour) April 2010 Not for sale or public distribution Contact Manager LOSAMBA project, PMD

  • This GIS dataset contains petroleum exploration and development titles (permits) as at March 2010. This dataset has been released to support the 2010 Offshore Petroleum Acreage Release.

  • The break-up of the supercontinent Columbia is refined by late Paleoproterozoic sedimentary basins in eastern Australia which record a significant change in the neodymium isotopic composition and age of clastic input at ~1650 Ma. Basin fill accumulated in the interval ~1690-1650 Ma and was derived from comparatively evolved sources that generated bulk -Nd(1650 Ma) values of -8 to -6. Subsequent sequences that accumulated between ~1650-1640 Ma are characterised by ~1650 Ma detrital grains, contain volcaniclastic intervals around 1650 Ma in age and have bulk -Nd (1650 Ma) values of -2 to -1. Significant sources with the combination of appropriate juvenile compositions and age are not known in Proterozoic Australia, nor known currently in the Siberian Craton or the South China Block. Both the Mazatzal Province Laurentia and the south-western Baltic Shield Idefjord terrane record juvenile volcanism and basin development at 1650 - 1600 Ma, paleomagnetic data and later geological histories suggest a closer match between the eastern part of Proterozoic Australia with the Idefjord terrane. We suggest that felsic volcanic rocks and derived sediments in this province provided a major source of juvenile detritus present in late Paleoproterozoic eastern Australian sedimentary basins, implying paleogeographic links of the Columbian supercontinent between Australia and the south-western Baltic shield, during extensional tectonics at ~1650 Ma.

  • This map shows the boundary of the Maritime Security Zones for each port for the purpose of the Maritime Transport & Office Security Act 2003. 1 Sheet (Colour) April 2010 Not for sale or public distribution Contact Manager LOSAMBA project, PMD

  • These datasets cover all of Moreton Bay Regional Council and are part of the 2009 South East Queensland LiDAR capture project. This project, undertaken by AAM Hatch Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ESRI binary grid - 10 metre Digital Elevation Model (DEM) mosaic in ESRI binary grid - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape

  • Predictive mineral discovery is concerned with the application of a whole of system process understanding to mineral exploration as opposed to an empirical deposit type approach. A mineral system process understanding can be derived from a consideration of five key questions, namely what is/are the: 1) geodynamic setting; 2) architecture; 3) sources and reservoirs; 4) drivers and pathways, and; 5) depositional mechanisms. The answers to these questions result in the identification of critical processes necessary for the function of a mineral system within a particular terrane, and permit the development of a targeting model. In this contribution we identify district scale critical orogenic gold mineral system processes for the late Archaean eastern Yilgarn Craton of Western Australia. During the geodynamic history of a terrane the critical processes which result in mineralisation change with time resulting in variations in mineralisation style. Proxies for critical processes have been mapped in an integrated GIS and are termed mappable mineral system process proxies (or MMSPP). In recognition of this, three separate time slices and a geochemical theme were analysed. Each MMSPP is given a weighting factor (WF) which reflects the spatial accuracy/coverage of the data and process criticality. For each theme/time-slice, a separate prospectivity map was created by summing the overlay or union of the spatial extent of each MMSPP, and adding the WF. A final target or prospectivity map was generated by a union of the four theme/time-slice prospectivity maps, and is tested against the known major deposits. The map 'discovered' the main gold camps and accounts for over 75% of the known gold in 5% of the area. This test verifies the process-based understanding and the appropriate mapping of the critical proxies. A further outcome from the map was the identification of a number of new target areas not known for significant gold mineralisation in what otherwise is thought to represent a mature terrane for gold exploration. The approach taken here has been to consider the Late Archaean gold deposits as a holistic system. Despite the recurring areas of uncertainty, this systems view has resulted in new findings that have generic applications to other mineral systems.

  • This dataset reflects the external boundaries of all native title determination and compensation applications that are currently recognized and active within the Federal Court process. Applications that are non-active (i.e. withdrawn, dismissed, finalised, rejected or combined) are only included as aspatial records for completeness. This is a national dataset with data partitioned by jurisdiction (State), for ease of use. Applications stored for each jurisdiction dataset include applications which overlap into adjoining jurisdictions as well as applications which overlap with these for completeness. This dataset depicts the spatial definition of active Claimant and Non-claimant native title determination applications and compensation applications. Where possible these may include internal boundaries or areas excluded. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member where assigned to the application. Applications included on the Schedule of Native Title (Federal Court) include all registered and unregistered applications as well as determined applications that are yet to be finalized. Geospatial data portraying native title information produced by the National Native Title Tribunal may not be on-sold. Value added products using this data must acknowledge the National Native Title Tribunal as the data source and include the NNTT disclaimer.

  • This dataset attempts to reflect the boundaries of claimant applications for Native Title as per the Register of Native Title Claims (s185, Native Title Act; Commonwealth). This is a national dataset but data is stored by jurisdiction (State), for ease of use. Applications stored for each jurisdiction dataset include applications which overlap into adjoining jurisdictions as well as applications which overlap with these. This dataset depicts the spatial record of registered claimant applications. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member assigned to the application. Applicants of registered applications have the Right To Negotiate (RTN) with respect to certain types of Future Acts over the area being claimed. Whilst applications that are determined are recorded on a separate register, all registered applications remain on the Register of Native Title Claims until otherwise finalised.. Geospatial data portraying native title information produced by the National Native Title Tribunal may not be on-sold. Value added products using this data must acknowledge the National Native Title Tribunal as the data source and include the NNTT disclaimer.

  • This dataset reflects the external boundaries of all native title determination and compensation applications that are currently recognized and active within the Federal Court process. Applications that are non-active (i.e. withdrawn, dismissed, finalised, rejected or combined) are only included as aspatial records for completeness. This is a national dataset with data partitioned by jurisdiction (State), for ease of use. Applications stored for each jurisdiction dataset include applications which overlap into adjoining jurisdictions as well as applications which overlap with these for completeness. This dataset depicts the spatial definition of active Claimant and Non-claimant native title determination applications and compensation applications. Where possible these may include internal boundaries or areas excluded. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member where assigned to the application. Applications included on the Schedule of Native Title (Federal Court) include all registered and unregistered applications as well as determined applications that are yet to be finalized. Geospatial data portraying native title information produced by the National Native Title Tribunal may not be on-sold. Value added products using this data must acknowledge the National Native Title Tribunal as the data source and include the NNTT disclaimer.