From 1 - 10 / 28
  • Australia has significant gas resources capable of meeting the needs of domestic and international consumers for decades. Commercial viability of the resource depends on a number of factors such as geology, infrastructure, resource quality, and water depth. Further exploration is required to bring on Australia's lowest cost gas resources.

  • The National Onshore Gas Pipelines Dataset represents the spatial locations of pipelines for the transmission of natural gas within mainland Australia complimented with feature attribution.

  • Map of Australia showing the distribution of black coal, brown coal and Coal Seam Gas bearing basins overlain by prohibited areas. This map and enlargements of the Sydney, Bowen/Surat and Arckaringa basins were provided to DoFD as part advice regarding CSG exploration and coal extraction on commonwealth lands. These maps and their subsets are in 'DRAFT' form and are for internal use only.

  • The Geological and Bioregional Assessments (GBA) Program is a series of independent scientific studies undertaken by Geoscience Australia and the CSIRO, supported by the Bureau of Meteorology, and managed by the Department of Agriculture, Water and the Environment. The Program consists of three stages across three regions with potential to deliver gas to the East Coast Gas Market. Stage 1 was a rapid regional prioritisation conducted by Geoscience Australia, to identify those sedimentary basins with the greatest potential to deliver shale and/or tight gas to the East Coast Gas Market within the next five to ten years. This prioritisation process assessed 27 onshore eastern and northern Australian basins with shale and/or tight gas potential. Further screening reduced this to a shortlist of nine basins where exploration was underway. The shortlisted basins were ranked on a number of criteria. The Cooper Basin, the Beetaloo Sub-basin and the Isa Superbasin were selected for more detailed assessment. Stage 2 of the program involved establishing a baseline understanding of the identified regions. Geoscience Australia produced regional geological evaluations and conceptualisations that inform the assessment of shale and/or tight gas prospectivity, ground- and surface-water impacts, and hydraulic fracturing models. Geoscience Australia’s relative prospectivity assessments provide an indication of where viable petroleum plays are most likely to be present. These data indicate areal and stratigraphic constraints that support the program’s further work in Stage 3, on understanding likely development scenarios, impact assessments, and causal pathways. <b>Citation:</b> Hall Lisa S., Orr Meredith L., Lech Megan E., Lewis Steven, Bailey Adam H. E., Owens Ryan, Bradshaw Barry E., Bernardel George (2021) Geological and Bioregional Assessments: assessing the prospectivity for tight, shale and deep-coal resources in the Cooper Basin, Beetaloo Subbasin and Isa Superbasin. <i>The APPEA Journal</i><b> 61</b>, 477-484. https://doi.org/10.1071/AJ20035

  • Recent national and state assessments have concluded that sedimentary formations that underlie or are within the Great Artesian Basin (GAB) may be suitable for the storage of greenhouse gases. These same formations contain methane and naturally generated carbon dioxide that has been trapped for millions of years. The Queensland government has released exploration permits for Greenhouse Gas Storage in the Bowen and Surat basins. An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are no hydrochemical studies of such deeper aquifers in the prospective storage areas. Geoscience Australia (GA) and the Geological Survey of Queensland (GSQ), Queensland Department of Mines and Energy, worked collaboratively under the National Geoscience Agreement (NGA) to characterise the regional hydrochemistry of the Denison Trough and Surat Basin and trialled different groundwater monitoring strategies. The output from this Project constitutes part of a regional baseline reference set for future site-specific and semi-regional monitoring and verification programmes conducted by geological storage proponents. The dataset provides a reference of hydrochemistry for future competing resource users.

  • This report is a summary of information collected between November, 1948 and July, 1949 in the course of visits to the United Kingdom and the United States. The main subjects investigated were the complete gasification of coal, particularly in respect of its application to Victorian brown coal, the production of oil by synthesis and the production and refining of shale oil. Information was sought on a considerable number of other interests in the field of fuel technology as the opportunity offered. The authorities consulted were invariably experts in their respective fields, and great care was taken to record their information accurately. The report is a summary of recent developments and not an exhaustive study of the subjects mentioned. A considerable mass of detail has been excluded but is available on record for further reference.

  • Bores sunk at Cremorne in 1891 struck coal at approximately 2802 feet. A company was formed to work the coal, but was refused permission to operate at Cremorne. A site at Balmain was secured, and the Birthday Shaft was sunk to a depth of 2,937 feet between 1897 and 1902. This report provides an overview of the occurrence of natural gas and workings for the period 1897 to 1948. Gas yields, commercial production, leakage problems, and the use of testing to determine the behaviour of gas in the mine are the key subjects that are addressed in this report.

  • The Energy component of Geoscience Australia’s Exploring for the Future (EFTF) program is aimed at improving our understanding of the petroleum resource potential of northern Australia, including the Lawn Hill Platform region of the Isa Superbasin. The Paleoproterozoic Isa Superbasin in northwestern Queensland contains organic rich sedimentary units with the potential to host both conventional and unconventional petroleum systems (Gorton & Troup, 2018). On the Lawn Hill Platform, the River and Lawn supersequences of the Isa Superbasin host the recently discovered Egilabria shale gas play and are considered highly prospective shale gas targets. However, the lateral extent of these plays is currently unknown due to the limited well and associated geochemical data. To aid in the identification of new areas with the potential to host active petroleum systems, this work assesses the burial and thermal history of the Lawn Hill Platform (Figure 1) by using organic richness, quality and thermal maturity of source rocks of the Isa Superbasin. This assessment is based on a compilation of updated and quality controlled publicly available total organic carbon (TOC), Rock-Eval pyrolysis and organic matter reflectance data, and combines revised assessments of the depth structure and isopach mapping by Bradshaw et al., (2018, in press). Burial-thermal relationships in the basin have been difficult to determine in the past, usually attributed to multiple hydrothermal events which has resulted in erratic, and occasionally inverted, maturity reflectance profiles (Gorton and Troup, 2018; Glikson, 1993). Additional difficulties that contribute large uncertainties to our understanding are estimating the burial history across the basin, especially the maximum depth of burial and hence the estimated amount of erosion. Initial modelling suggests erosion amounts could range anywhere from several hundreds of meters to several thousands of meters across the Lawn Hill Platform region (Figure 2). Burial and thermal history modelling is calibrated using paleo-maturity data (reflectance profiles as mentioned above, Figure 2), which is poorly constrained. Because of the age (Paleoproterozoic) of the organic matter, reflectance values of alginite and bitumen were used, which are not always comparable to the standard vitrinite reflectance profiles that are typically used for burial and thermal history modelling calibration. In this study other options of burial-thermal model calibrations were assessed to aid in characterising the petroleum potential of this region, including; bottom hole temperature, developing an improved Tmax conversion equation specific to the Isa Superbasin region, using published conversion equations to convert alginite and bitumen reflectance to vitrinite equivalent reflectance, using HI as an indicator of thermal history, oxygen isotopes (δ18O), and fluid inclusion geothermometry. Abstract and poster for presentation at the Australian Organic Geochemistry Conference 2018

  • The Browse Basin is located offshore on Australia's North West Shelf and is a proven hydrocarbon province hosting gas with associated condensate and where oil reserves are typically small. The assessment of a basin's oil potential traditionally focuses on the presence or absence of oil-prone source rocks. However, light oil can be found in basins where source rocks are gas-prone and the primary hydrocarbon type is gas-condensate. Oil rims form whenever such fluids migrate into reservoirs at pressures less than their dew point (saturation) pressure. By combining petroleum systems analysis with geochemical studies of source rocks and fluids (gases and liquids), four Mesozoic petroleum systems have been identified in the basin. This study applies petroleum systems analysis to understand the source of fluids and their phase behaviour in the Browse Basin. Source rock richness, thickness and quality are mapped from well control. Petroleum systems modelling that integrates source rock property maps, basin-specific kinetics, 1D burial history models and regional 3D surfaces, provides new insights into source rock maturity, generation and expelled fluid composition. The principal source rocks are Early-Middle Jurassic fluvio-deltaic coaly shales and shales within the J10-J20 supersequences (Plover Formation), Middle-Late Jurassic to Early Cretaceous sub-oxic marine shales within the J30-K10 supersequences (Vulcan and Montara formations) and K20-K30 supersequences (Echuca Shoals Formation). All of these source rocks contain significant contributions of land-plant derived organic matter and within the Caswell Sub-basin have reached sufficient maturities to have transformed most of the kerogen into hydrocarbons, with the majority of expulsion occurring from the Late Cretaceous until present.

  • The Oil and Gas Pipelines service contains known spatial locations of onshore and offshore pipelines or pipeline corridors used to transport natural gas, oil and other liquids within Australia’s mainland and territorial waters.