From 1 - 10 / 51
  • Exploring for the Future was a $100.5 million initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The four-year program (2016-2020) focused on northern Australia and parts of South Australia. The under-explored northern Australian region offers enormous potential for industry development and is advantageously located close to major global markets. Geoscience Australia's leading scientists used and developed new innovative techniques to gather new scientific data and information, on an unprecedented scale, about the potential mineral, energy and groundwater resources concealed beneath the surface. This work was undertaken in greenfield areas, where the Exploring for the Future program had the greatest impact. This dataset depicts the geographical extents of the various projects undertaken as part of this program, with an indicative total spend for each

  • The ‘Australia’s Future Energy Resources’ (AFER) project is a four-year multidisciplinary investigation of the potential energy commodity resources in selected onshore sedimentary basins. The resource assessment component of the project incorporates a series of stacked sedimentary basins in the greater Pedirka-western Eromanga region in eastern central Australia. Using newly reprocessed seismic data and applying spatially enabled, exploration play-based mapping tools, a suite of energy commodity resources have been assessed for their relative prospectivity. One important aspects of this study has been the expansion of the hydrocarbon resource assessment work flow to include the evaluation of geological storage of carbon dioxide (GSC) opportunities. This form of resource assessment is likely to be applied as a template for future exploration and resource development, since the storage of greenhouse gases has become paramount in achieving the net-zero emissions target. It is anticipated that the AFER project will be able to highlight future exploration opportunities that match the requirement to place the Australian economy firmly on the path of decarbonisation.

  • <p>The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The four-year program led by Geoscience Australia focusses on northern Australia and parts of South Australia to gather new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface. As part of the Exploring for the Future program, this study aims to improve our understanding of the petroleum resource potential of northern Australia. As a component of this project, collaboration between the Onshore Energy Systems Branch, Geoscience Australia and the Northern Territory Geological Survey (NTGS) is designed to produce pre-competitive information to assist with the evaluation of the petroleum prospectivity of onshore Northern Territory basins. <p>Proterozoic basins of northern Australia including the McArthur Basin, the Isa Superbasin and the Isa Superbasin have the potential to host conventional oil and gas, in addition to unconventional shale gas and oil plays (Muir et al., 1980; Munson, 2014; Revie, 2016; Revie, 2017; Gorton & Troup, 2018). To date, work on the prospective petroleum systems in the McArthur Basin has focused principally on source rocks within the McArthur and Roper groups in the southern parts of the basin. However due to limited data availability, the spatial variability in source rock quality, type and thermal maturity remains poorly constrained across the region. In the South Nicholson region of Queensland and the Northern Territory, data from the Paleoproterozoic Isa Superbasin and the Mesoproterozoic South Nicholson Basin is extremely limited and a large proportion of the available data is old and of poor quality. To more comprehensively characterise these organic rich source rocks, higher resolution coverages of pre-competitive geochemical data is required (Gorton & Troup, 2018; Jarrett et al. 2018). <p>This data release contains the total organic carbon (TOC) content and Rock-Eval pyrolysis data of 314 samples selected from nine drill cores from the McArthur Basin, South Nicholson Basin and Isa Superbasin that are housed in the Northern Territory Geological Survey’s Darwin core repository. The wells include Glyde 1, Lamont Pass 3 (McArthur Basin), Brunette Downs 1, CRDD001, NTGS 00/1, NTGS 01/1, NTGS 02/1 (South Nicholson Basin), in addition to ND1 and ND2 (Isa Superbasin). This data was generated at the Isotope and Organic Geochemistry Laboratory at Geoscience Australia as part of the Exploring for the Future program. The results show that the McArthur Basin samples analysed contain source rocks with poor to fair oil and gas generative potential with variable thermal maturity from immature to early oil mature. The Isa Superbasin samples analysed have poor to good gas generative potential and the South Nicholson samples analysed have poor to excellent gas generative potential. Samples from the Walford Dolostone and the Mullera Formation are overmature and petroleum potential cannot be assessed from the results of this study. This data release provides additional information that can be used to characterise the organic richness, kerogen type and thermal maturity of source rocks in the Teena Dolostone, Barney Creek Formation and Lynott Formation of the McArthur Basin, the Walford Dolostone and Mount Les Siltstone of the Isa Superbasin, in addition to the Constance Sandstone and Mullera Formation of the South Nicholson Basin. This data is provided in preparation for future work to generate statistics quantifying the spatial distribution, quantity and quality of source rocks, providing important insights into the hydrocarbon prospectivity of northern Australian basins

  • This web map service provides visualisations of in-service, large-scale battery installations connected to the National Energy Market (NEM) power system in eastern and south-eastern Australia. Data compiled from the Australian Energy Market Operator (AEMO).

  • This web map service provides visualisations of in-service, large-scale battery installations connected to the National Energy Market (NEM) power system in eastern and south-eastern Australia. Data compiled from the Australian Energy Market Operator (AEMO).

  • A key focus of the Exploring for the Future program was the Kidson Sub-basin, a large, underexplored and poorly understood depocentre in the southern part of the Canning Basin of Western Australia. The Canning Basin hosts proven petroleum systems and has recently become an area of interest for unconventional hydrocarbon exploration. Several formations within deeper basin depocentres are under investigation. Unconventional petroleum resource evaluation is generally dependent on an understanding of both local and regional stresses, as these exert a control over subsurface fluid flow pathways, as well as the geomechanical properties of reservoir units. Gaps exist in our understanding of these factors within the Canning Basin, and particularly the Kidson Sub-basin where wellbore coverage is sparse. This study identifies a generally NE–SW-oriented regional maximum horizontal stress azimuth from interpretation of borehole failure in five petroleum wells, and a broadly strike–slip faulting stress regime from wireline data and wellbore testing. Variations in stress regime at different crustal levels within the basin are highlighted by one-dimensional mechanical earth models that show changes in the stress regime with depth as well as by lithology, with a general shift towards a normal faulting stress regime at depths greater than ~2.5 km. <b>Citation:</b> Bailey, A.H.E. and Henson, P., 2020. Present-day stresses of the Canning Basin, WA. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div>As part of the Exploring For The Future (EFTF) program, the Australia’s Future Energy Resources (AFER) project has investigated the potential of energy resource commodities in the Pedirka/western Eromanga basins region targeting conventional and unconventional hydrocarbons as well as evaluating the suitability of sedimentary sections to store carbon dioxide.</div><div>The interpretation of new biostratigraphic and reprocessed seismic data provided new insights into the regional geology of this previously explored region. The Permian, Triassic and Jurassic depositional history of the study area is largely recorded by extensive fluvial-lacustrine sediments, including changes from braided to meandering river systems and sustained periods of flood-plain environments in which thick sequences of coal-bearing strata developed. During the Cretaceous, expanding shallow marine environments were established in the western part of the Pedirka/western Eromanga region.</div><div>Age-control obtained from palynological analysis and the mapping of key seismic horizons yielded an improved understanding of the extent and character of unconformities which define breaks and changes in depositional processes. Results from new regional stratigraphic correlations initiated a comprehensive review of previously established basin definitions in the greater Pedirka/western Eromanga area. </div><div>While confirming the stacked nature of these basins which hold sedimentary records from the early Paleozoic to the Late Cretaceous, changes to stratigraphic basin boundaries have been applied to more correctly reflect the impact of unconformity related depositional breaks. As a result, the Lower and Middle Triassic Walkandi Formation is now assigned to the upper section of the Pedirka Basin, while the Upper Triassic Peera Peera Formation represents commencement of deposition in the western Eromanga Basin, thereby abandoning the recognition of the Simpson Basin as a separate Triassic depocenter.&nbsp;</div><div><br></div><div><br></div>

  • The document summarises new seismic interpretation metadata for two key horizons from Base Jurassic to mid-Cretaceous strata across the western and central Eromanga Basin, and the underlying Top pre-Permian unconformity. New seismic interpretations were completed during a collaborative study between the National Groundwater Systems (NGS) and Australian Future Energy Resources (AFER) projects. The NGS and AFER projects are part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on previous work undertaken as part of the ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB) Project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion (Norton & Rollet, 2022; Vizy & Rollet, 2022; Rollet et al., 2022; Rollet et al., in press.), the NGS Project (Norton & Rollet, 2023; Rollet et al., 2023; Vizy & Rollet, 2023) and the AFER Project (Bradshaw et al., 2022 and in press, Bernecker et al., 2022, Iwanec et al., 2023; Iwanec et al., in press). The recent iteration of revisions to the GAB geological and hydrogeological surfaces (Vizy & Rollet, 2022) provides a framework to interpret various data sets consistently (e.g., boreholes, airborne electromagnetic, seismic data) and in a 3D domain, to improve our understanding of the aquifer geometry, and the lateral variation and connectivity in hydrostratigraphic units across the GAB (Rollet et al., 2022). Vizy and Rollet (2022) highlighted some areas with low confidence in the interpretation of the GAB where further data acquisition or interpretation may reduce uncertainty in the mapping. One of these areas was in the western and central Eromanga Basin. New seismic interpretations are being used in the western Eromanga, Pedirka and Simpson basins to produce time structure and isochore maps in support of play-based energy resource assessment under the AFER Project, as well as to update the geometry of key aquifers and aquitards and the GAB 3D model for future groundwater management under the NGS Project. These new seismic interpretations fill in some data and knowledge gaps necessary to update the geometry and depth of key geological and hydrogeological surfaces defined in a chronostratigraphic framework (Hannaford et al., 2022; Bradshaw et al., 2022 and in press; Hannaford & Rollet, 2023). The seismic interpretations are based on a compilation of newly reprocessed seismic data (Geoscience Australia, 2022), as part of the EFTF program, and legacy seismic surveys from various vintages brought together in a common project with matching parameters (tying, balancing, datum correcting, etc.). This dataset has contributed to a consolidated national data coverage to further delineate groundwater and energy systems, in common data standards and to be used further in integrated workflows of mineral, energy and groundwater assessment. The datasets associated with the product provides value added seismic interpretation in the form of seismic horizon point data for two horizons that will be used to improve correlation to existing studies in the region. The product also provides users with an efficient means to rapidly access a list of core data used from numerous sources in a consistent and cleaned format, all in a single package. The following datasets are provided with this product: 1) Seismic interpretation in a digital format (Appendix A), in two-way-time, on key horizons with publically accessible information, including seismic interpretation on newly reprocessed data: Top Cadna-owie; Base Jurassic; Top pre-Permian; 2) List of surveys compiled and standardised for a consistent interpretation across the study area (Appendix B). 3) Isochore points between Top Cadna-owie and Base Jurassic (CC10-LU00) surfaces (Appendix C). 4) Geographical layer for the seismic lines compiled across Queensland, South Australia and the Northern Territory (Appendix D). These new interpretations will be used to refine the GAB geological and hydrogeological surfaces in this region and to support play-based energy resource assessments in the western Eromanga, Pedirka and Simpson basins.

  • <div>A downloadable map showing Australia's Oil and Gas Titles as at 22 December 2022</div>

  • Developing Northern Australia Map produced on request for the Office of Northern Australia. It highlights development in northern Australia, indicating major mineral and energy resource projects, mineral deposits, and major infrastructure. It also incorporates data from other Government agencies, providing key information used to inform decision makers in the region such as environmental data, location of indigenous communities, native title determinations, and indigenous land use agreements.