From 1 - 10 / 44
  • This is a 3 minute movie (with production music), to be played in the background during the October 28th 2010 Geoscience Australia Parlimentary Breakfast. The video shows a wide range of the types of activities that GA is involved in. These images include GA people doing GA activities as well as some of the results of offshore surveys; continental mapping; eath monitoring etc. The movie will be played as a background before and after GA's CEO (Chris Pigram) presentation.

  • The CO2CRC Otway Project is Australia's first demonstration of geological storage of CO2 within deep underground reservoirs. The project has undergone many phases of implementation and the latest work program, Phase 2C, is aimed at injecting between 10,000 and 30,000 tonnes of CO2 into the saline Paraatte Formation located around 1,400m below surface. One of the key measures of success for Phase 2C is successful seismic detection of the injected gas stream. The geophysics team from Curtin University of Technology have previously conducted three 3D surface seismic surveys, and numerous smaller experiments, at the Otway CO2 re-injection site. These tests were completed during Phase 1 of the Otway Project whereby an (80-20%) CO2-CH4 gas mixture was re-injected into the depleted Warre-C gas reservoir. The feasibility of seismic monitoring of the CO2-CH4 gas mixture injected into the Paraatte Formation is expected to be improved over the Warre-C reservoir due to the increased fluid property contrast between brine and the CO2-CH4 mixture and the shallower depth of the reservoir. A comprehensive desktop feasibility study has been completed by the Curtin/CSIRO geophysics team to assess the probability of successful seismic detection and the preliminary results are encouraging. A Seismic Assurance Review workshop was completed incorporating seismic expertise from both academia and industry to assess the risk of unsuccessful seismic detection. The workshop was held on the 3rd and 4th of November, 2011, at Curtin University of Technology.

  • The CO2CRC Otway Project in southwestern Victoria is the Australian flagship for geological storage of CO2. Phase 1 of the project involved the injection of a CO2-rich supercritical fluid into a depleted natural gas field at a depth of ~2 km. The project reached a major milestone late last year with the cessation of injection and the emplacement of around 65,000 tonnes of the supercritical fluid. Phase 2 of the project is set to commence in early 2011 with the injection a few 100 tonnes of pure CO2 into a saline aquifer at ~1.5 km depth. Critical to the project was the drilling of the CRC-1 and CRC-2 wells, with both being used as injection wells. During drilling of each well, fluorescein dye was added to the drilling mud with the intention to maintain a concentration of 5 ppm w/v. The role of fluorescein was to 1) quantitated the degree of drilling fluid contamination that may accompany autochonthous formation waters recovered with the multiple dynamic testing (MDT) tool, and 2) provide a measure of the depth of drilling mud penetration into the recovered cores in order to provide pristine material for microbiological studies.

  • A short animation of an atmospheric simulation of methane emissions from a coal mine (produced using TAPM) compared to actual methane concentrations detected by the Atmospheric Monitoring Station, Arcturus in Central Queensland. It illustrates the effectiveness of both the detection and simulation techniques in the monitoring of atmospheric methane emissions. The animation shows a moving trace of both the simulated and actual recorded emissions data, along with windspeed and direction indicators. Some data provided by CSIRO Marine and Atmospheric Research.

  • This is a collection of conference program and abstracts presented at AOGC 2010, Canberra.

  • The geological storage of carbon dioxide (CO2) is the process whereby CO2 captured from power plants or other industrial facilities is transported by pipeline to a suitable location and then injected under pressure into a deep geological reservoir formation, where it remains permanently trapped and prevented from entering the atmosphere. The processes by which it is retained in the subsurface are generally those that have trapped oil, gas and naturally generated CO2 for millions of years. The geological formations that can be utilised for this trapping have the same characteristics as those that are able to act as reservoir rocks for petroleum. They have good porosity and permeability and have an overlying sealing formation, which will prevent the trapped fluids migrating out of the storage reservoir and possibly escaping to the surface. In addition, because of the phase behaviour of CO2, efficient storage requires that they are stored at depths greater than 800 below the surface. Unlike oil and gas, which rely primarily on a three dimensional structural trap to prevent them from ultimately rising to the surface, there are additional trapping mechanisms for CO2. Given a sufficiently long migration path within a formation, CO2 will ultimately be rendered immobile by dissolution into the formation water, residual trapping and potentially, over longer time scales, mineralisation. As groundwaters at these depths are generally saline, this type of storage is often termed deep saline aquifer storage. A recent nationwide review by Commonwealth and State geological surveys, as part of the Carbon Storage Taskforce, rated the suitability of geological basins across Australia for geological storage of CO2. The most geologically suitable basins are the offshore Gippsland and North Perth basins but several onshore basins also rate highly. These include the Eromanga, Cooper, Bowen, Galilee, Surat, Canning and Otway basins. The Victorian Government has recently released area for greenhouse gas storage exploration in the Gippsland Basin and the Queensland Government in the Galilee and Surat basins. The aquifers within these basins provide groundwater for human consumption, agriculture, mining, recreation and groundwater dependent ecosystems. The Surat Basin also contains oil and gas accumulations that are being exploited by the onshore petroleum industry. Understanding the existing the groundwater's chemistry and the connectivity between aquifers in the context of its current use is essential in order to determine whether prospective aquifers could be used for geological storage of CO2 without compromising other activities. The potential risks to groundwater from the potential migration of CO2 and changes to groundwater properties that might be expected will also be discussed. Current data gaps include poor hydrogeochemical data coverage for the deeper aquifers and particularly limited data on trace metals and organics. A comparison with experiences learned from enhanced oil recovery using CO2 in North America and the CO2CRC's pilot CO2 injection project in Western Victoria will illustrate some of the unique differences and opportunities for geological storage of CO2 in Australia. Oral presentation at "Groundwater 2010" conference, 31 October - 4th November 2010, Canberra

  • A question and answer style brochure on geological storage of carbon dioxide. Questions addressed include: - What is geological storage? - Why do we need to store carbon dioxide? - How can you store anything in solid rock? - Could the carbon dioxide contaminate the fresh water supply? - Could a hydrocarbon seal leak? - Are there any geological storage projects in Australia?

  • Initial 2D seismic survey using mini-vibroseis with high frequency band 10 - 150Hz. This seismic survey is part of the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) projects.

  • Matching of CO2 emission sources with storage opportunities or source/sink matching (SSM), involves the integration of a number of technical, social and economic issues. It requires identification of the optimal locations for both the emission source and storage site for CO2 emissions. The choice of optimal sites is a complex process and will not rest solely on the best technical site for storage, but will require a detailed assessment of source issues, transport links and integration with economic and environmental factors. Transport is one of the major costs in CO2 sequestration and in many instances it will strongly influence how locations are chosen, but itself will be dependent on what type of facilities are to be built, be they either onshore or offshore or a combination of both. Comparison of theoretical studies, and the numerous criteria they utilise in their assessments, with current or planned commercial operations indicates that it is only a few of the major criteria that determine site locations.

  • The GEODISC Geographic Information System (GIS) Overview and Demonstration With the understanding that "better information leads to better decisions", Geoscience Australia has produced a Geographic Information System (GIS) that showcases the research completed within Projects 1, 2, and 8 of the GEODISC Program (Geological CO2 storage program in the Australian Petroleum Cooperative Research Centre, 1999-2003). The GIS is an interactive archive of Australia-wide regional analysis of CO2 sources and storage potential, incorporating economic modelling (Projects 1 and 8), as well as four site specific studies of the Dongara Gas field, Carnarvon Basin, Petrel Sub-basin and Gippsland Basin (Project 2). One of the major objectives of a collaborative research program such as GEODISC is to share results and knowledge with clients and fellow researchers, as well as to be able to rapidly access and utilise the research in future technical and policy decisions. With this in mind, the GIS is designed as a complete product, with a user-friendly interface developed with mainstream software to maximise accessibility to stakeholders. It combines tabular results, reports, models, maps, and images from various geoscientific disciplines involved in the geological modelling of the GEODISC site specific studies (ie geochemistry, geomechanics, reservoir simulations, stratigraphy, and geophysics) into one media. The GEODISC GIS is not just an automated display system, but a tool used to query, analyse, and map data in support of the decision making process. It allows the user to overlay different themes and facilitates cross-correlation between many spatially-related data sources. There is a vast difference between seeing data in a table of rows and columns and seeing it presented in the form of a map. For example, tabular results such as salinity data, temperature information and pressure tests, have been displayed as point data linked to well locations. These, in turn, have been superimposed on geophysical maps and images, to enable a better understanding of spatial relationships between features of a potential CO2 injection site. The display of such information allows the instant visualisation of complex concepts associated with site characterisation. In addition, the GEODISC GIS provides a tool for users to interrogate data and perform basic modelling functions. Economic modelling results have been incorporated into the regional study so that simple calculations of source to sink matching can be investigated. The user is also able to design unique views to meet individual needs. Digital and hardcopy map products can then be created on demand, centred on any location, at any scale, and showing selected information symbolised effectively to highlight specific characteristics. A demonstration of the GIS product will illustrate all of these capabilities as well as give examples of how site selection for CO2 sources and storage locations might be made.