From 1 - 10 / 286
  • The Palaeoproterozoic to Mesoproterozoic (<1850-<1490 Ma) southern McArthur Basin, Northern Territory, Australia, contains an unmetamorphosed, relatively undeformed succession of carbonate, siliciclastic and volcanic rocks that host the McArthur River (HYC) Zn-Pb-Ag deposit. Seismic reflection data obtained across this basin have the potential to revolutionise our understanding of the crustal architecture in which this deposit formed. These data were collected in late 2002 as part of a study to examine the fundamental basin architecture of the southern McArthur Basin, particularly the Batten Fault Zone, and the nature of the underlying basement. Geoscience Australia, the Northern Territory Geological Survey and the Predictive Mineral Discovery Cooperative Research Centre combined to acquire an east-west deep seismic reflection profile (line 02GA-BT1) approximately 110 km long, commencing 15 km west of Borroloola, and extending westwards along the Borroloola-Roper Bar road to the Bauhinia Downs region (Fig. 1). A short 17 km north-south cross line (02GA-BT2) was also acquired in collaboration with AngloAmerican. The seismic data were acquired through the Australian National Seismic Imaging Resource (ANSIR).

  • The Stuart Shelf overlies the eastern portion of the Gawler Craton. This part of the Gawler Craton is South Australia's major mineral province and contains the world-class Olympic Dam Cu-U-Au deposit and the recent Cu and Au discovery at Prominent Hill. The Stuart Shelf is several kilometres thick in places. As such, little is known of the crustal structure of the basement, its crustal evolution or its tectono-stratigraphic relationship to adjacent areas, for example the Curnamona Province in the east. There has been much effort applied to advancing our understanding of basement, mainly through the use of potential field data and deep drilling programmes; though drilling has proved very costly and very hit and miss. The Stuart Shelf area needs new data and methods to bring our knowledge of it to the next level of understanding. At a Gawler Craton seismic planning workshop held in July 2001, stakeholders from industry, government, and university stakeholders identified several criteria fundamental to undertaking any seismic survey within the Gawler Craton. These were - Location of seismic traverse across a known mineral system in order to improve understanding and enhance knowledge of the region's mineral systems. Access to surface and/or drill hole geological knowledge to link geology data with the seismic interpretation. Good coverage of potential field data, and Potential for the seismic data to stimulate area selection and exploration in the survey region.

  • Extended abstract reporting on status of geophysical work being conducted within the Remote Eastern Frontiers project.

  • Regional seismic reflection data in hard rock areas contains more shallow information than might first be supposed. Here I use a subset of the 2005 Tanami Seismic Survey data to show that near surface features can be defined, including paleochannels, Palaeozoic basins and structures within the Proterozoic basement. Successful imaging depends on correct determination of refraction statics, including identification of refractor branches, and use of a floating or intermediate datum during seismic reflection processing. Recognition of steep stacking velocity gradients associated with surface referenced processing aids velocity analysis and can further delineate areas of thicker regolith in palaeochannels. The first arrival refraction analysis can also be applied in more detail to estimating thickness of regolith and depth to economic basement in areas of sedimentary cover.

  • Seismic line 07GA-IG2, described here, forms part of the Isa-Georgetown-Charters Towers seismic survey that was acquired in 2007. The seismic line is oriented approximately east-west and extends from east of Croydon in the west to near Mt Surprise in the east (Figure 1). The acquisition costs for this line were provided jointly by the Geological Survey of Queensland and Geoscience Australia, and field logistics and processing were carried out by the Seismic Acquisition and Processing team from Geoscience Australia. Three discrete geological provinces have been interpreted on this seismic section (Figure 2). Two of these, the Numil and Abingdon Provinces, only occur in the subsurface. The upper crustal part of the seismic section consists of the Paleo- to Mesoproterozoic Etheridge Province, which here includes the Croydon Volcanic Group in the western part of the Province. In this east-west profile, the crust is essentially two-layered, with a strongly reflective lower crust defining the Numil and Abingdon Provinces and a less reflective upper crust being representative of the Etheridge Province.

  • Overview of the deep crustal seismic surveys conducted by Geoscience Australia through the Onshore Energy Security Program since its commencment in 2006 up to September 2009.

  • As part of Geoscience Australia's Southwest Margin Project, two major marine surveys were undertaken (from October 2008 to February 2009) to investigate the resource potential of deep-water frontier areas on the southwest Australian continental margin. 1. Southwest Australian Margin Regional Marine 2D Seismic Survey (S310) - Areas covered by the seismic survey include the Mentelle Basin, North Perth Basin (Zeewyck and Houtman Sub-basins), Southern Carnarvon Basin and the Wallaby Plateau. Data acquired: 7300 kilometres of 2D seismic (12 second record length, 8 km solid streamer), gravity and magnetic data. In addition to the new seismic reflection data, Geoscience Australia has reprocessed selected open-file industry seismic lines in the offshore Northern Perth Basin (11,700 line km) that provides ties to most wells in the Abrolhos and Houtman sub-basins. 2. Southwest Australian Margin Marine Reconnaissance Survey - The marine reconnaissance survey investigated the geology and marine environments of the offshore North Perth and Southern Carnarvon Basins and the Wallaby Plateau. Data acquired: multibeam swath bathymetry (230,000 km2), gravity and magnetics (25,000 line km), sub-bottom profiler (25,000 line km), geological samples (190 rocks from 53 dredge sites)

  • Between October 2008 and February 2009, Geoscience Australia undertook two major surveys off the coast of Western Australia. Areas of interest included the Mentelle and northern Perth Basins, the Southern Carnarvon Basin, the southern Exmouth Sub-basin (Northern Carnarvon Basin) and the Wallaby Plateau. These surveys collected a range of data, including industry-standard seismic reflection data and gravity and magnetic data. In addition to the new data collected, Geoscience Australia has reprocessed existing open file 2D seismic data within the survey area. These data are available for purchase. Please complete the order form on the downloadable information sheet and return to Geoscience Australia.