From 1 - 10 / 311
  • Initial lead isotope ratios from Archean volcanic-hosted massive sulfide (VHMS) and lode gold deposits and neodymium isotope model ages from igneous rocks from the geological provinces that host these deposits identify systematic spatial and temporal patterns, both within and between the provinces. The Abitibi-Wawa Subprovince of the Superior Province is characterized by highly juvenile lead and neodymium. Most other Archean provinces, however, are characterized by more evolved isotopes, although domains within them can be characterized by juvenile isotope ratios. Metal endowment (measured as the quantity of metal contained in geological resources per unit surface area) of VHMS and komatiite-associated nickel sulfide (KANS) deposits is related to the isotopic character, and therefore the tectonic history, of provinces that host these deposits. Provinces with extensive juvenile crust have significantly higher endowment of VHMS deposits, possibly as a consequence of higher heat flow and extension-related faults. Provinces with evolved crust have higher endowment of KANS deposits, possibly because such crust provided either a source of sulfur or a stable substrate for komatiite emplacement. In any case, initial radiogenic isotope ratios can be useful in predicting the endowment of Archean terranes for VHMS and KANS deposits. Limited data suggest similar relationships may hold in younger terranes.

  • Australia's Identified Mineral Resources is an annual nation-wide assessment of Australia's ore reserves and mineral resources.

  • Australia's Identified Mineral Resources is an annual nation-wide assessment of Australia's ore reserves and mineral resources.

  • Australia's Identified Mineral Resources is an annual nation-wide assessment of Australia's ore reserves and mineral resources.

  • Extended review of mineralexploration in Australia in 2010.

  • Under the Australian Government's Energy Security Program, Geoscience Australia conducted a seismic survey and a marine reconnaissance survey to acquire new geophysical data and obtain geological samples in frontier basins along the southwest Australian continental margin. Specific areas of interest include the Mentelle Basin, northern Perth Basin, Wallaby Plateau and southern Carnarvon Basin. The regional seismic survey acquired 7300 km of industry-standard 2D reflection seismic data using an 8 km solid streamer and 12 second record length, together with gravity and magnetic data. These new geophysical datasets, together with over 7000 km of re-processed open-file seismic data, will facilitate more detailed mapping of the regional geology, determination of total sediment thickness, interpretation of the nature and thickness of crust beneath the major depocentres, modelling of the tectonic evolution, and an assessment of the petroleum prospectivity of frontier basins along the southwest margin. The scientific aim of the marine reconnaissance survey was to collect swath bathymetry, potential field data, geological samples and biophysical data. Together with the new seismic data, samples recovered from frontier basins will assist in understanding the geological setting and petroleum prospectivity of these underexplored areas.

  • The critical success factors which control hydrocarbon prospectivity in the Otway Basin have been investigated using petroleum systems approaches. Greater than 99% of the hydrocarbon inventory within the Victorian Otway Basin has been sourced from Austral 2 (Albian-Aptian) source rocks and these accumulations are typically located either within, or within approximately 3,000 m of source rock kitchens which are at peak thermal maturity at present day. Importantly, the zones of greatest prospectivity are located where these source rocks have been actively generating and expelling hydrocarbons throughout the Late Tertiary, primarily as a result of sediment loading associated with progradation of the Heytesbury shelfal carbonates. This peak generation window occurs at an average depth of approximately 2,500-3,500 m 'sub-mud' across much of the basin, which has allowed prospective hydrocarbon fairways to be mapped out, thereby highlighting areas of greatest prospectivity. It is believed that the spatial proximity of the actively generating source rocks to the accumulations is due to several factors, which includes overall poor fault seal in the basin (success cases occur where charge rate exceeds leakage rate) and relatively complex and tortuous migration fairways (which means that large volumes of hydrocarbons are only focussed and migrate for relatively short distances). etc

  • Large areas of prospective North and North-East Queensland have been surveyed by airborne hyperspectral sensor, HyMap, and airborne geophysics as part of the 'Smart' exploration initiative by the Geological Survey of Queensland. In particular, 25000 km2 of hyperspectral mineral and compositional map products, at 4.5 m spatial resolution, have been generated and made available via the internet. In addition, more than 130 ASTER scenes were processed and merged to produce broad scale mapping of mineral groups (Thomas et al, 2008). Province-scale, accurate maps of mineral abundances and minerals chemistries were generated for North Queensland as a result of a 2 year project starting in July 2006 which involved CSIRO Exploration and Mining, the Geological Survey of Queensland (GSQ), Geoscience Australia, James Cook University, and Curtin University. Airborne radiometric data acquired over the same North Queensland Mt Isa - Cloncurry areas as the hyperspectral surveys, had been acquired at flight line spacing of 200 metre. Such geophysical radiometric data provides a useful opportunity to compare the mineral mapping potential of both techniques, for a wide range of geological and vegetated environments. In this study, examples are described of soil mapping within the Tick Hill area, and geological / exploration mapping within the Mt Henry and Suicide Ridge prospects of North Queensland.

  • At its 4th meeting in Brisbane on 21st and 22nd August, the Copper and Bauxite Committee arranged a conference with Mr. J. Kruttschnitt, Managing Director of the Mt. Isa Mines, at which officers of the Department of Mines of Queensland were present, to discuss ways and means of quickly exploiting the recently indicated copper ore body situated in the Hanging Wall of the Black Star Lode at Mt. Isa Mine. At the request of the Committee, and following discussion of the details between all parties, Mr. Kruttschnitt made a proposal, which is submitted herewith.

  • Australia's Identified Mineral Resources 2010 presents estimates of Australia's mineral resources at end of December 2009 for all major and several minor mineral commodities (Table 1) based on published and unpublished data available to Geoscience Australia. These resource estimates provide a long term view of what is likely to be mined. They are compared with national totals of ore reserves for each commodity, which provides the industry view of what is likely to be mined in the short to medium term. Mine production data are based on figures from the Australian Bureau of Agricultural and Resource Economics and Sciences. World ranking of Australia's mineral resources have been calculated mainly from information in publications of the United States Geological Survey. A summary of significant industry developments also is presented. Australia's Identified Mineral Resources 2010 provides information on and analysis of mineral exploration expenditures in Australia for 2008-09 and the calendar year 2009. Trends in expenditure are presented and discussed.