From 1 - 10 / 29
  • Having techniques available for the accurate quantification of potential CO2 surface leaks from geological storage sites is critical for regulators, public assurance and for underpinning carbon pricing mechanisms. Currently, there are few options available that enable accurate CO2 quantification of potential leaks at the soil-atmosphere interface. Integrated soil flux measurements can be used to quantify CO2 emission rates from the soil and atmospheric techniques such as eddy covariance or Lagrangian stochastic modelling have been used with some success to quantify CO2 emissions into the atmosphere from simulated surface leaks. The error for all of these techniques for determining the emission rate is not less than 10%. A new technique to quantify CO2 emissions was trialled at the CO2CRC Ginninderra controlled release site in Canberra. The technique, termed atmospheric tomography, used an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a simulated CO2 leak. The technique requires knowledge of concentration enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of concentration in the dispersion plume. Continuous measurements of turbulent wind and temperature statistics were used to model the dispersion plume.

  • Hot Rocks in Australia - National Outlook Hill, A.J.1, Goldstein, B.A1 and Budd, A.R.2 goldstein.barry@saugov.sa.gov.au hill.tonyj@saugov.sa.gov.au Petroleum & Geothermal Group, PIRSA Level 6, 101 Grenfell St.Adelaide SA 50001 Anthony.Budd@ga.gov.au Onshore Energy & Minerals Division, Geoscience Australia, GPO Box 378 Canberra ACT 26012 Abstract: Evidence of climate change and knowledge of enormous hot rock resources are factors stimulating growth in geothermal energy research, including exploration, proof-of-concept appraisals, and development of demonstration pilot plant projects in Australia. In the six years since the grant of the first Geothermal Exploration Licence (GEL) in Australia, 16 companies have joined the hunt for renewable and emissions-free geothermal energy resources in 120 licence application areas covering ~ 67,000 km2 in Australia. The associated work programs correspond to an investment of $570 million, and that tally excludes deployment projects assumed in the Energy Supply Association of Australia's scenario for 6.8% (~ 5.5 GWe) of Australia's base-load power coming from geothermal resources by 2030. Australia's geothermal resources fall into two categories: hydrothermal (from relatively hot groundwater) and the hot fractured rock i.e. Enhanced Geothermal Systems (EGS). Large-scale base-load electricity generation in Australia is expected to come predominantly from Enhanced Geothermal systems. Geologic factors that determine the extent of EGS plays can be generalised as: - source rock availability, in the form of radiogenic, high heat-flow basement rocks (mostly granites); - low thermal-conductivity insulating rocks overlying the source rocks, to provide thermal traps; - the presence of permeable fabrics within insulating and basement rocks, that can be enhanced to create heat-exchange reservoirs; and - a practical depth-range, limited by drilling and completion technologies (defining a base) and necessary heat exchange efficiency (defining a top). A national EGS resource assessment and a road-map for the commercialisation of Australia's EGSs are expected to be published in 2008. The poster will provide a synopsis of investment frameworks and geothermal energy projects underway and planned in Australia.

  • Covering an area of approximately 247 000km2, the Galilee Basin is a significant feature of central Queensland. Three main depocentres contain several hundred metres of Late Carboniferous to Middle Triassic sediments. Sedimentation in the Galilee Basin was dominated by fluvial to lacustrine depositional systems. This resulted in a sequence of sandstones, mudstones, siltstones, coals and minor tuff in what was a relatively shallow intracratonic basin with little topographic relief. Forty years or more of exploration in the Galilee Basin has failed to discover any economic accumulations of hydrocarbons, despite the presence of apparently fair to very good reservoirs and seals in both the Permian and Triassic sequence. Despite some relatively large distances (upwards of 500km) between sources and sinks, previous and ongoing work on the Galilee Basin suggests that it has potential to sequester a significant amount of Queensland's carbon dioxide emissions. Potential reservoirs include the Early Permian Aramac Coal Measures, the Late Permian Colinlea Sandstone and the Middle Triassic Clematis Sandstone. These are sealed by several intraformational and local seals as well as the regional Triassic Moolayember Formation. With few suitable structural traps and little faulting throughout the Galilee sequence, residual trapping within saline reservoir is the most likely mechanism for storing CO2. The current study is aimed at building a sound geological model of the basin through activities such as detailed mapping, well correlation, and reservoir and seal analysis leading to reservoir simulations to gain a better understanding of the basin.

  • In July 2010 Geoscience Australia and CSIRO Marine & Atmospheric Research jointly commissioned a new atmospheric composition monitoring station (' Arcturus') in central Queensland. The facility is designed as a proto-type remotely operated `baseline monitoring station' such as could be deployed in areas that are likely targets for commercial scale carbon capture and geological storage (CCS). It is envisaged that such a station could act as a high quality reference point for later in-fill, site based, atmospheric monitoring associated with geological storage of CO2. The station uses two wavelength scanned cavity ringdown instruments to measure concentrations of carbon dioxide (CO2), methane (CH4), water vapour and the isotopic signature (?13C) of CO2. Meteorological parameters such as wind speed and wind direction are also measured. In combination with CSIRO's TAPM (The Air Pollution Model), data will be used to understand the local variations in CO2 and CH4 and the contributions of natural and anthropogenic sources in the area to this variability. The site is located in a region that supports cropping, grazing, cattle feedlotting, coal mining and gas production activities, which may be associated with fluxes of CO2 and CH4. We present in this paper some of the challenges found during the installation and operation of the station in a remote, sub-tropical environment and how these were resolved. We will also present the first results from the site coupled with preliminary modelling of the relative contribution of large point source anthropogenic emissions and their contribution to the background.

  • There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of '13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and baseline signals were evaluated and statistically compared to test for the presence of fugitive methane emissions. In addition, a time series model of the methane baseline was developed in order to generate alternative realizations of the baseline signal. These were used to provide measures of both the likelihood of detecting fugitive emissions at various emission levels and of the false alarm rate. Results of the statistical analysis and an indicative minimum fugitive methane emission rate that can be detected using a single monitoring station are presented. Poster presented at the American Geophysical Union meeting, December 2013, San Francisco

  • The decision at the 2011 United Nations climate change meeting in Durban to accept CCS as a CDM project activity was truly historic and long overdue. The United Nations Clean Development Mechanism (CDM) allows emission reduction projects in developing countries to earn certified emission reduction (CER) credits, each equivalent to one tonne of CO2. CERs can be traded and sold, and used by developed countries to meet part of their emission reduction targets under the Kyoto Protocol. The intention of the mechanism is to stimulate sustainable development and emission reductions, while providing developed countries with some flexibility in how they achieve their emission reduction targets. The CDM allows developed countries to invest in emission reductions at lowest cost. Since its inception, the CDM has been identified as a means to reduce the cost of CCS projects and so initiate more projects. After five years of negotiations to get CCS accepted as a CDM project activity, the Cancun Decision (2010) put in place a work program to address issues of general concern before CCS could be included in the CDM. The 2010 work program consisted of submissions, a synthesis report, a technical workshop, and concluded with the UNFCCC Secretariat producing draft 'modalities and procedures' describing comprehensive requirements for CCS projects within the CDM. This twenty page 'rulebook' provided the basis for negotiations in Durban. The challenging negotiations, lasting over 32 hours, concluded on 9th December, 2012, with Parties agreeing to the text specifying the modalities and procedures for CCS as CDM project activities. The provisions of the Durban Decision (2011) cover a range of technical issues including site selection and characterisation, risk and safety assessment, monitoring, liabilities, verification and certification, environmental and social impact assessments, responsibilities for non-permanence, and timing of the CDM-project end. etc

  • This animation has been developed by Geoscience Australia to illustrate the carbon dioxide capture, transportation and storage process. Carbon capture and storage (CCS) is one of the technologies that we can use to reduce greenhouse gas emissions to the atmosphere, particularly from sources such as coal or natural gas fired power stations and industrial plants. In this process carbon dioxide (CO2) is captured at the source (e.g. power station), transported via pipeline and injected deep underground into a porous rock, such as sandstone. There it is trapped by the overlying fine grained and impermeable mud rocks.

  • No abstract available

  • Approximately one quarter of Australia's CO2 emissions come from southeast and central Queensland. This poster presents the geoscientific interpretations which lead to constructing a simplified 3-D model of a potential geological storage site for CO2. The Bowen Basin is located in northeast Australia, approximately 200 to 500 km from major CO2 emission hubs in southeast Queensland. The resources of the Bowen Basin include coal, oil and gas, and there are water resources within the overlying Great Artesian Basin. Defining trap integrity within the Bowen Basin is important to ensure that none of these resources are compromised. The Wunger Ridge area has been the focus of petroleum exploration for hydrocarbons. Geological, geophysical, hydrodynamic, petrological, petrophysical and seal capacity interpretations of datasets from the area were undertaken. These interpretations indicate that the Triassic fluvial - deltaic Showgrounds Sandstone is the most suitable for CO2 storage and injection as it is permeable and saturated with brackish to saline water except where hydrocarbons have accumulated. Geological profiles were developed using sequence stratigraphic concepts and combined with rock properties, measured from core, to produce simplified 3-D models with the goal of assessing parameters for CO2 injection and migration. Simulation runs using simple models, based on a coarse-scale grid, suggest that either one horizontal or two vertical wells are required to inject at the proposed rate. Geological heterogeneity increases injection pressure around the wellbore and reduces injection rates compared to homogeneous models, resulting in the need for more injection wells.

  • <p>Geoscience Australia in collaboration with the CO2CRC hosted three controlled subsurface release experiments of CO2 during 2012 to 2013 at an agricultural research station managed by CSIRO Plant Industry Canberra. The facility was designed to simulate surface emissions of CO2 and other greenhouse gases from the soil into the atmosphere, and has deployed a range of near-surface monitoring techniques in the pursuit of improving detection and quantification methods and technologies. This product, which encompasses 4 geodatabases, a metadata report and a data dictionary, presents all the data collected during the experiments from over 10 research organisations, and is made to use with GIS software. The intention of this data release is make the data available for comparison with measurements taken at other controlled release experiments, CO2 storage projects and natural analogues. This will hopefully facilitate the further development of greenhouse gas monitoring technologies, methods and monitoring strategies and increase our understanding of the migration behaviour and impact of near surface CO2 leakage. <p>The contents of each geodatabase/experiment is summarised below: <p>Release 1 (Feb-May 2012): <p>- Soil microbial data <p>- Soil chemistry <p>- Free air CO2 concentration <p>- Eddy covariance <p>- Groundwater chemistry <p>- Soil gas <p>- Krypton tracers <p>- EM31 <p>- Soil flux <p>Release 2 (Oct-Dec 2012): <p>- Groundwater chemistry <p>- EM31 <p>- EM38 <p>- Soil gas <p>- Soil flux <p>- Airborne hyperspectral <p>- Ground hyperspectral <p>Release 3 (Oct-Dec 2013): <p>- Mobile CO2 surveys <p>- Groundwater depth <p>- Eddy covariance <p>- Plant physiology and chemistry <p>- EM31 <p>- EM38 <p>- Soil gas <p>- Soil flux <p>- Airborne hyperspectral <p>All Releases: <p>- Aerial images <p>- Groundwater depths <p>- Meteorological data <p>Bibliographic reference: <p>Feitz, A.J., Schroder, I.F., Jenkins, C.J., Schacht, U., Zegelin, S., Berko, H., McGrath, A., Noble, R., Palu, T.J., George, S., Heath, C., Zhang, H., Sirault, X. and Jimenez-Berni, J. 2016. Ginninderra Controlled CO2 Release Facility Dataset 2012-2013. eCat 90078, Geoscience Australia and CO2CRC, Canberra. https://pid.geoscience.gov.au/dataset/ga/90078. <p>Digital Object Identifier: http://dx.doi.org/10.4225/25/5823c37333f9d