From 1 - 10 / 84
  • The cyclonic wind hazard over the Australian region is determined using synthetic tropical cyclone event sets derived from general circulation models (GCMs). Cyclonic wind hazard is influenced by the frequency, intensity and spatial distribution of tropical cyclones, all of which may change under future climate regimes due to influences such as warmer sea surface temperatures and changes in the global circulation. Cyclonic wind hazard is evaluated using a statistical-parametric model of tropical cyclones - the Tropical Cyclone Risk Model (TCRM) - which can be used to simulate many thousands of years of cyclone activity. TCRM is used to generate synthetic tracks which are statistically similar to the input event set - be it an historical record of other synthetic event set. After applying a parametric wind field to the simulated tracks, we use the aggregated wind fields to evaluate the average recurrence interval wind speeds for three IPCC AR4 scenarios, and make comparisons to the corresponding average recurrence interval wind speed estimates for current climate simulations. Results from the analysis of two GCMs are presented.

  • Note that this Record has now been published as Record 2014/050, GeoCat number 78802

  • The aim of this project is to equip ANUGA with a storm surge capability in partnership with the Department of Planning Western Australia (DoP), take steps to validate the methodology and provide a case study to DoP in the form of a storm surge scenario for Bunbury. The developed capability will provide a mechanism whereby DoP can investigate mitigation options for a range of hydrodynamic hazards.

  • Climate change has become a real challenge for all nations throughout the world. The Fifth IPCC Assessment Report (2007) indicates that climate change is inevitable and those nations that quickly adapt will mitigate risk from the threats of the increased strength of tropical cyclones, storm surge inundation, floods and the spread of disease vectors. Decision making for adaptation will be more effective when it is based on evidence. Evidence-based disaster management means that decision makers are better informed, and the decision making process delivers more rational, representative and objective climate change outcomes. To achieve this, fundamental data needs to be translated into information and knowledge, before it can be put to use by the decision makers as policy, planning and implementation. The exposure to these increased natural hazards includes the communities, businesses, services, lifeline utilities and infrastructure. The thorough understanding of exposed infrastructure and population under current and future climate projections is fundamental to the process of future capacity building. The development of the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). NEXIS collects, collates, manages and provides the information required to assess multi-hazard impacts. Exposure information is defined as a suite of elements at risk from climate change which includes human populations, buildings, businesses and infrastructure.

  • The cyclonic wind hazard over the Australian region is determined using synthetic tropical cyclone event sets derived from general circulation models (GCMs) to provide guidance on the potential impacts of climate change. Cyclonic wind hazard is influenced by the frequency, intensity and spatial distribution of tropical cyclones, all of which may change under future climate regimes due to influences such as warmer sea surface temperatures and changes in the global circulation. We evaluate the tropical cyclonic wind hazard using a statisticalparametric model of tropical cyclones - the Tropical Cyclone Risk Model (TCRM) - which can be used to simulate many thousands of years of tropical cyclone activity. TCRM is used to generate synthetic tracks which are statistically similar to the input event set, which can be either an historical record of tropical cyclone activity or a record of tropical cyclone-like vortices identified in general circulation models. A parametric wind field is used to estimate the swath of winds associated with the simulated tracks. The resulting wind fields are then used to evaluate the average recurrence interval wind speeds using extreme value statistics. We present the average recurrence interval wind speeds based on three IPCC AR4 scenarios and draw comparisons with current climate simulations and the historical record.

  • Climate change is a challenge facing nations worldwide. The Fifth IPCC Assessment Report (2007) indicated that climate change is inevitable and that nations need to quickly adapt to mitigate its effects on the risks associated with increased tropical cyclone intensity, storm surge inundation, floods and exacerbated spread of disease. Nationally consistent exposure information is required to understand the risks associated with climate change and thereby support decision making on adaptation options. Decision makers can draw on this evidence-base to develop more rational, representative and objective strategies for addressing emerging challenges. Exposure information requires the translation of fundamental data into information and knowledge before it can be put to use for policy, planning and implementation. Communities, businesses, essential services and infrastructure are all exposed to these increased natural hazards. A thorough understanding of exposed infrastructure, building stock and population under current and future climate projections is fundamental to the process of future capacity building. The National Exposure Information System (NEXIS) provides a broad range of information on the exposure profile of any given area at various administrative and disaster sensitive geographic resolutions with Australia-wide coverage. The information is collected, collated and maintained at building level that can subsequently be aggregated geographically. The information recorded in NEXIS covers a wide range of building attributes such as building type, construction type and year built together with information on population demographics and metrics on business activity such as business type, turnover, employee numbers and customer capacity.

  • A statistical downscaling approach is used to compare changes in environmental indicators of tropical cyclone characteristics between three greenhouse gas emissions scenarios in the Australian region, using results from models used for the IPCC 4th Assessment Report. Maximum potential intensity is shown to change linearly with global mean temperature, independent of emissions scenario, with a 2-3% increase per degree of global warming in Australia's tropical regions. Changes in vertical wind shear are more ambiguous, however the magnitude of changes in tropical cyclone genesis regions is small. The genesis potential index increases significantly in all scenarios, and appears to be driven by the increase in MPI. Results for Australia's tropical regions suggest that tropical cyclone intensity is highly likely to increase with global warming, while results for frequency are suggestive of a frequency increase, but less conclusive. Further work to assess frequency changes will allow quantification of changes in tropical cyclone hazard under climate change.

  • The 2011 United Nations climate change meeting in Durban provided an historic moment for CCS. After five years without progress, the Cancun Decision (2010) put in place a work program to address issues of concern before CCS could be included under the Kyoto Protocol's Clean Development Mechanism (CDM) and so allow projects in developing countries to earn Certified Emission Reductions (CERs). The program - consisting submissions, a synthesis report and workshop - concluded with the UNFCCC Secretariat producing draft 'modalities and procedures describing requirements for CCS projects under the CDM. The twenty page 'rulebook' provided the basis for negotiations in Durban. The challenging negotiations, lasting over 32 hours, concluded on 9th December with Parties agreeing to adopt final modalities and procedures for CCS under the CDM. These include provisions for participation requirements (including host country regulations), site selection and characterisation, risk and safety assessment, monitoring, liabilities, financial provision, environmental and social impact assessments, responsibilities for long term non-permanence, and timing of the CDM-project end. A key issue was the responsibility for any seepage of CO2 emissions in the long-term (non-permanence). The modalities and procedures separate responsibility for non-permanence from the liability for any local damages resulting from operation of the storage site. In relation to the former, they allow for the host country to determine the responsible entity, either the host country or the country purchasing the CERs. Note that a CER which incorporates responsibility for seepage will be less attractive to buyers. Thus a standard is established for managing CCS projects in developing countries, which will ensure a high level of environmental protection and is workable for projects. It sets an important precedent for the inclusion of CCS into other support mechanisms.

  • This report, 'Pacific Climate Change Science Program: Evaluation of severe wind hazard from tropical cyclones', will be delivered to CSIRO to form a subsection of the 'Climate Change in the Pacific' report. The latter will be launched in November 2011 and will constitute one of the main deliverables for the Pacific Climate Change Science Program (PCCSP). The PCCSP is part of the Australian Government's commitment through the International Climate Change Adaptation Initiative (ICCAI) to meet high priority climate change adaptation needs in vulnerable countries in the Asia-Pacific region. This report provides an evaluation of cyclonic wind hazard for the fifteen PCCSP partner countries located in the western Pacific with the one exception of East Timor. The wind hazard is estimated for both the current climate and for the future climate under an A2 emissions scenario. The current climate wind hazard is estimated by applying GA's Tropical Cyclone Risk Model (TCRM) to the historical track record. TCRM is a statistical-parametric model of tropical cyclone behaviour, enabling users to generate synthetic records of tropical cyclones representing many thousands of years of activity. TCRM is then applied to tracks of tropical cyclone-like vortices (TCLVs) detected in downscaled global climate models to determine how the cyclonic wind hazard may change in the future. The results indicated that the wind loading design standard in this region may significantly underestimate the wind hazard for the current climate. For the future climate projections, the analysis suggests that the wind hazard may decrease for countries close to the equator and near the Australian coastline but could increase for countries greater than 20 degrees poleward from the equator.

  • A review commissioned by the Council of Australian Governments (COAG) in June 2001 entitled 'Natural Disasters in Australia: reforming mitigation, relief and recovery arrangements' concluded that a new approach to natural disasters in Australia was needed. While disaster response and reaction plans remain important, there is now a greater focus towards anticipation of mitigation against natural hazards, involving a fundamental shift in focus beyond relief and recovery towards cost-effective, evidence-based disaster mitigation. This new approach now includes an assessment of the changes in frequency and intensity of natural hazard events that are influenced by climate change, and aims to achieve safer, more sustainable Australian communities in addition to a reduction in risk, damage and losses from future natural disasters. Geoscience Australia (GA) is developing risk models and innovative approaches to assess the potential losses to Australian communities from a range of sudden impact natural hazards. GA aims to define the economic and social threat posed by a range of rapid onset hazards through a combined study of natural hazard research methods and risk assessment models. These hazards include earthquakes, cyclones, floods, landslides, severe winds and storm surge/tsunami. This presentation provides an overview of the risk that peak wind gusts pose to a number of Australian communities (major capital cities), and for some cities examines how climate change may affect the risk (utilising modelling underpinned by a small subset of the IPCC greenhouse gas emission scenarios).