geologic
Type of resources
Keywords
Publication year
Scale
Topics
-
The Collaborative Research Centre for Greenhouse Gas Technologies (CO2CRC) Program 3.2 Risk Assessment is working toward a risk assessment procedure that integrates risk across the complete CCS system and can be used to meet the needs of a range of stakeholders. Any particular CCS project will hold the interest of multiple stakeholders who will have varied interests in the type of information and in the level of detail they require. It is unlikely that any single risk assessment tool will be able to provide the full range of outputs required to meet the needs of regulators, the general public and project managers; however, in many cases the data and structure behind the outputs will be the same. In using a suite of tools, a well designed procedure will optimize the interaction between the scientists, engineers and other experts contributing to the assessment and will allow for the required information to be presented in a manner appropriate for each stakeholder. Discussions of risk in CCS, even amongst the risk assessment community, often become confused because of the differing emphases on what the risks of interest are. A key question that must be addressed is: 'What questions is the risk analysis trying to answer?' Ultimately, this comes down to the stakeholders, whose interests can be broken into four target questions: - Which part of the capture-transport-storage CCS system? - Which timeline? (project planning, project lifespan, post closure, 1,000 years, etc) - Which risk aspect? (technical, regulatory, economic, public acceptance, or heath safety and environment) - Which risk metric? (Dollars, CO2 lost, dollars/tonne CO2 avoided, etc.) Once the responses to these questions are understood a procedure and suite of tools can be selected that adequately addresses the questions. The key components of the CO2CRC procedure we describe here are: etc
-
In 2008, the Australian Parliament debated and passed the first national legislation to establish a title system of access and property rights for greenhouse gas (CO2) storage in offshore waters - the Offshore Petroleum and Greenhouse Gas Storage Act 2006 (the Act). The Act provides for petroleum titles and greenhouse gas storage titles to coexist. To manage possible interactions between petroleum and CO2 storage operations, the Act introduced a test to determine whether activities under one title would pose a significant risk of a significant adverse impact (SROSAI test) on pre-existing rights and assets under the other title. Where petroleum and CO2 storage projects are proposed in the same area, the Act provides for commercial agreements between petroleum and CO2 storage proponents. It is only in the absence of any such commercial agreements that the regulator will have to decide whether an activity under one title would pose a significant risk of a significant adverse impact on the operations within the other title area. The SROSAI test is based on three core parameters: - the probability of the occurrence of an adverse impact; - the cost of the adverse impact on the project; and - the total resource value of the project. In estimating the cost of an adverse impact the regulator will take into consideration whether the adverse impact will result in: - any increase in capital or operating costs; - any reduction in rate of recovery of petroleum or rate of injection of CO2; - any reduction in the quantity of the petroleum to be recovered or CO2 stored. Safety and environmental impacts would be considered in estimating costs, only if those impacts would contribute to an increase in capital or operating costs, or reduction in petroleum recovery or CO2 injection. Etc
-
The Early Cretaceous Gage Sandstone and South Perth Shale formations are one of the most prospective reservoir-seal pairs in the Vlaming Sub-basin. Plays include post-breakup pinch-outs with the South Perth Shale forming a top seal. The Gage reservoir has porosities of 23-30% and permeabilities of 200-1800 mD and was deposited in palaeotopographic lows of the Valanginian breakup unconformity. This is overlain by the thick deltaic South Perth (SP) Supersequence. To characterise the reservoir-seal pair, a detailed sequence stratigraphic analysis was conducted by integrating 2D seismic interpretation, well log analysis and new biostratigraphic data. The palaeogeographic reconstructions for the Gage reservoir are based predominantly on the seismic facies mapping, whereas SP Sequence reconstructions are derived from mapping higher-order prograding sequences and establishing changes in sea level and sediment supply. The Gage reservoir forms part of a sand-rich submarine fan system and was deposited in water depths of > 400 m. It ranges from confined canyon fill to fan deposits on a basin plain. Directions of sediment supply are complex, with major sediment contributions from a northern and southern canyon adjacent to the Badaminna Fault Zone. The characteristics of the SP Supersequence differ markedly between the northern and southern parts of the sub-basin due to variations in palaeotopography and sediment supply. Palaeogeographic reconstructions reveal a series of regressions and transgressions leading to infilling of the palaeo-depression. Seven palaeogeographic reconstructions for the SP Supersequence portray a complex early post-rift depositional history in the central Vlaming Sub-basin. The developed approach could be applicable for detailed studies of other sedimentary basins
-
Atmospheric tomography is a monitoring technique that uses an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a gaseous emission. Application of the technique to date has relied on air samples being pumped over short distances to a high precision FTIR Spectrometer, which is impractical at larger scales. We have deployed a network of cheaper, less precise sensors during three recent large scale controlled CO2 release experiments; one at the CO2CRC Ginninderra site, one at the CO2CRC Otway Site and another at the Australian Grains Free Air CO2 Enrichment (AGFACE) facility in Horsham, Victoria. The purpose of these deployments was to assess whether an array of independently powered, less precise, less accurate sensors could collect data of sufficient quality to enable application of the atmospheric tomography technique. With careful data manipulation a signal suitable for an inversion study can be seen. A signal processing workflow based on results obtained from the atmospheric array deployed at the CO2CRC Otway experiment is presented.
-
Abstract for submission to 11th IEA GHG International Conference on Greenhouse Gas Control Technologies. Conference paper to follow pending selection for oral or poster presentation. Abstract covers the GA-ACCA21 China Australia Geological Storage of CO2 (CAGS) Project run through PMD/ED 2009-2012.
-
An atmospheric greenhouse gas (GHG) monitoring station began operation in July 2010 near Emerald, Queensland. The station is part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR) to establish and operate a high precision atmospheric monitoring facility for measurement of baseline greenhouse gases (GHG) in a high priority geological carbon dioxide storage region. The primary purpose of the station is to field test newly developed greenhouse gas monitoring technology and demonstrate best practice for regional baseline atmospheric monitoring appropriate for geological storage of carbon dioxide. The GHG records were to be used as a reference for monitoring of the atmosphere at a CO2 storage project, providing a baseline to quantify typical variations in the area and a background against which any anomalies in the immediate vicinity of the storage might be detected. The site chosen for the GHG atmospheric monitoring station is in the locality of Arcturus, 50 km southeast of Emerald in the Central Highlands, Queensland. Site selection was based on the recommendations of the Carbon Storage Taskforce's National Carbon Mapping and Infrastructure Plan, regional assessments of prospective basins, regional atmospheric modelling, and consultation with key stakeholders. The key driver for the stakeholder consultation group was to support early projects for large scale onshore geological storage. Both the Bowen and Surat basins were identified as potential early mover onshore storage regions by the group and suitable for a regional atmospheric monitoring station. During early 2010, ZeroGen had an active exploration program for geological storage and the site was eventually located approximately 8km upwind from the boundary of ZeroGen's most prospective storage area in the northern Denison Trough, part of the larger Bowen Basin. The Arcturus site and environs is representative of the activities and ecology of Queenslan's Central Highlands and the greenhouse gas signals are likely be influenced by cropping, pasture, cattle production, and gas and coal activities. These same activities are also likely to be dominant sources of greenhouse gases in the Surat Basin. Importantly, the site is secure, can be accessed via an existing road, is not subject to flooding, and has easy access to electrical lines that only required the installation of a transformer on an electric pole. A long lead time for new electricity connections at remote sites (potentially greater than 12 months) was identified as a key risk to the project. Negotiations with the electricity supplier resulted in connection in less than 4 months. An access agreement was negotiated with the landowner to enable the installation of the monitoring station and access to the site.
-
Australia has been making major progress towards early deployment of carbon capture and storage from natural gas processing and power generation sources. This paper will review, from the perspective of a government agency, the current state of various Australian initiatives and the advances in technical knowledge up until the 2010 GHGT conference. In November 2008, the Offshore Petroleum and Greenhouse Gas Storage Bill 2006 was passed by the Australian Parliament and established a legal framework to allow interested parties to explore for and evaluate storage potential in offshore sedimentary basins that lie in Australian Commonwealth waters. As a result of this Act, Australia became the first country in the world, in March 2009, to open exploration acreage for storage of greenhouse gases under a system that closely mirrors the well-established Offshore Petroleum Acreage Release. The ten offshore areas offered for geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances. The co-incidence of the 2009 Global Financial Crisis may have reduced the number of prospective CCS projects that were reported to be in the 'pipe-line' and the paper examines the implications of this apparent outcome. The Carbon Storage Taskforce has brought together both Australian governments technical experts to build a detailed assessment of the perceived storage potential of Australia's sedimentary basins. This evaluation has been based on existing data, both on and offshore. A pre-competitive exploration programme has also been compiled to address the identified data gaps and to acquire, with state funding, critical geological data which will be made freely available to encourage industrial participation in the search for commercial storage sites.
-
The decision at the 2011 United Nations climate change meeting in Durban to accept CCS as a CDM project activity was truly historic and long overdue. The United Nations Clean Development Mechanism (CDM) allows emission reduction projects in developing countries to earn certified emission reduction (CER) credits, each equivalent to one tonne of CO2. CERs can be traded and sold, and used by developed countries to meet part of their emission reduction targets under the Kyoto Protocol. The intention of the mechanism is to stimulate sustainable development and emission reductions, while providing developed countries with some flexibility in how they achieve their emission reduction targets. The CDM allows developed countries to invest in emission reductions at lowest cost. Since its inception, the CDM has been identified as a means to reduce the cost of CCS projects and so initiate more projects. After five years of negotiations to get CCS accepted as a CDM project activity, the Cancun Decision (2010) put in place a work program to address issues of general concern before CCS could be included in the CDM. The 2010 work program consisted of submissions, a synthesis report, a technical workshop, and concluded with the UNFCCC Secretariat producing draft 'modalities and procedures' describing comprehensive requirements for CCS projects within the CDM. This twenty page 'rulebook' provided the basis for negotiations in Durban. The challenging negotiations, lasting over 32 hours, concluded on 9th December, 2012, with Parties agreeing to the text specifying the modalities and procedures for CCS as CDM project activities. The provisions of the Durban Decision (2011) cover a range of technical issues including site selection and characterisation, risk and safety assessment, monitoring, liabilities, verification and certification, environmental and social impact assessments, responsibilities for non-permanence, and timing of the CDM-project end. etc
-
Identification of major hydrocarbon provinces from existing world assessments for hydrocarbon potential can be used to identify those sedimentary basins at a global level that will be highly prospective for CO2 storage. Most sedimentary basins which are minor petroleum provinces and many non-petroliferous sedimentary basins will also be prospective for CO2 storage. Accurate storage potential estimates will require that each basin be assessed individually, but many of the prospective basins may have ranges from high to low prospectivity. The degree to which geological storage of CO2 will be implemented in the future will depend on the geographical and technical relationships between emission sites and storage locations, and the economic drivers that affect the implementation for each source to sink match. CO2 storage potential is a naturally occurring resource, and like any other natural resource there will be a need to provide regional access to the better sites if the full potential of the technology is to be realized. Whilst some regions of the world have a paucity of opportunities in their immediate geographic confines, others are well endowed. Some areas whilst having good storage potential in their local region may be challenged by the enormous volume of CO2 emissions that are locally generated. Hubs which centralize the collection and transport of CO2 in a region could encourage the building of longer and larger pipelines to larger and technically more viable storage sites and so reduce costs due to economies of scale.
-
The GEODISC Geographic Information System (GIS) Overview and Demonstration With the understanding that "better information leads to better decisions", Geoscience Australia has produced a Geographic Information System (GIS) that showcases the research completed within Projects 1, 2, and 8 of the GEODISC Program (Geological CO2 storage program in the Australian Petroleum Cooperative Research Centre, 1999-2003). The GIS is an interactive archive of Australia-wide regional analysis of CO2 sources and storage potential, incorporating economic modelling (Projects 1 and 8), as well as four site specific studies of the Dongara Gas field, Carnarvon Basin, Petrel Sub-basin and Gippsland Basin (Project 2). One of the major objectives of a collaborative research program such as GEODISC is to share results and knowledge with clients and fellow researchers, as well as to be able to rapidly access and utilise the research in future technical and policy decisions. With this in mind, the GIS is designed as a complete product, with a user-friendly interface developed with mainstream software to maximise accessibility to stakeholders. It combines tabular results, reports, models, maps, and images from various geoscientific disciplines involved in the geological modelling of the GEODISC site specific studies (ie geochemistry, geomechanics, reservoir simulations, stratigraphy, and geophysics) into one media. The GEODISC GIS is not just an automated display system, but a tool used to query, analyse, and map data in support of the decision making process. It allows the user to overlay different themes and facilitates cross-correlation between many spatially-related data sources. There is a vast difference between seeing data in a table of rows and columns and seeing it presented in the form of a map. For example, tabular results such as salinity data, temperature information and pressure tests, have been displayed as point data linked to well locations. These, in turn, have been superimposed on geophysical maps and images, to enable a better understanding of spatial relationships between features of a potential CO2 injection site. The display of such information allows the instant visualisation of complex concepts associated with site characterisation. In addition, the GEODISC GIS provides a tool for users to interrogate data and perform basic modelling functions. Economic modelling results have been incorporated into the regional study so that simple calculations of source to sink matching can be investigated. The user is also able to design unique views to meet individual needs. Digital and hardcopy map products can then be created on demand, centred on any location, at any scale, and showing selected information symbolised effectively to highlight specific characteristics. A demonstration of the GIS product will illustrate all of these capabilities as well as give examples of how site selection for CO2 sources and storage locations might be made.