2022
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Geoscience Australia is planning a deep crustal reflection seismic survey in South Australia, New South Wales and Victoria as part of the Exploring for the Future program
-
As global metal demands are increasing whilst new discoveries are declining, the magnetotelluric (MT) technique has shown promise as an effective technique to aid mineral systems mapping. Several case studies have shown a spatial correlation between mineral deposits and conductors, with some showing that resistivity models derived from MT are capable of mapping mineral systems from the lithosphere to deposit scale. However, until now, the statistical significance of such correlations has not been demonstrated and therefore hindered robust utilization of MT data in mineral potential assessments. Here we quantitatively analyze resistivity models from Australia, the United States of America (USA), South America and China and demonstrate that there is a statistically-significant correlation between upper mantle conductors and porphyry copper deposits, and between mid-crustal conductors and orogenic gold deposits. Volcanic hosted massive sulfide deposits show significant correlation with upper mantle conductors in Australia. Differences in the correlation pattern between these deposit types likely relate to differences in the chemistry, redox state and location of source mineralizing fluids and magmas, and indicate signatures of mineral system processes can be preserved in the crust and mantle lithosphere for hundreds of millions of years. Appeared in Scientific Reports volume 12, Article number: 8190 (2022), 17 May 2022
-
The Mesozoic alkaline and related igneous rocks of Australia web map service depicts the spatial representation of the alkaline and related rocks of Mesozoic age.
-
Digital Elevation data record the terrain height variations from the processed point- or line-located data recorded during a geophysical survey. This Cobar P5009 EXT 3 digital elevation model radar grid is elevation data for the Cobar Magnetic and Radiometric Survey, 2021. This survey was acquired under the project No. 5009 for the geological survey of NSW. The grid has a cell size of 0.00039074 degrees (approximately 40m). This grid contains the ground elevation relative to the geoid for the Cobar Magnetic and Radiometric Survey, 2021. It represents the vertical distance from a location on the Earth's surface to the geoid. The data are given in units of meters. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This East Tasmania Magnetic and Radiometric Survey, TAS, 2022, (P5020), total magnetic intensity, reduced to pole, first vertical derivative grid is the first vertical derivative of the TMI RTP grid of the East Tasmania Magnetic and Radiometric Survey, 2022 survey. This grid has a cell size of degrees (approximately 40m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2022 by the TAS Government, and consisted of 57178 line-kilometres of data at 200m line spacing and 80m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the East Tasmania Magnetic and Radiometric Survey, 2022 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This Cobar P5009 EXT 1 dose rate grid has a cell size of 0.00039074 degrees (approximately 40m) and shows the terrestrial dose rate of the Cobar Magnetic and Radiometric Survey, 2021. The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
The Australian Government, through the National Water Infrastructure Fund – Expansion, commissioned Geoscience Australia (GA) to undertake the project ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB). The project commenced in July 2019 and will finish in June 2022. The aim of the project is to develop and evaluate new tools and techniques to assess the status of GAB groundwater system to support responsible management of basin water resources. A critical relationship exists between sediment depositional architecture and groundwater flow within and between GAB aquifers, and their connectivity with underlying and overlying aquifers. Little is known about lateral and vertical facies variation within the hydrogeological units and potential compartmentalisation and connectivity across the GAB. To improve the understanding of distribution and characteristics of Jurassic and Cretaceous sediments across the Eromanga/Galilee/Surat basins region, GA is compiling, processing and correlating a variety of well log data. Correlations have been made between geological units of similar age using palynological data from 322 key wells along 28 regional transects to standardise lithostratigraphic units, which are currently described using varying nomenclature, to a single chronostratigraphic chart across the entire GAB. The distribution of generalised sand/shale ratios calculated for 236 wells in the Surat and Eromanga basins are used to estimate the thickness of sand and shale in the different formations, with implications for formation porosity and the hydraulic properties of aquifers and aquitards. This study highlights regional lithological heterogeneity in each hydrogeological unit, and contributes to our understanding of connectivity within and between aquifers. This report and associated data package provide a first phase of data compilation on 322 key wells in the Surat and Eromanga basins to assist in updating the geological framework for the GAB. A data gap analysis and recommendations for building on this initial work are also provided.
-
Geoscience Australia currently uses two commercial petroleum system modelling software packages, PetroMod https://www.software.slb.com/products/petromod and Zetaware http://www.zetaware.com, to undertake burial and thermal history modelling on wells in Australian sedimentary basins. From the integration of geological (age-based sedimentary packages, uplift and erosional events), petrophysical (porosity, permeability, and thermal conductivity) and thermal (downhole temperature, heat flow, vitrinite reflectance, and Tmax) input data, to name the most significant, a best-fit model of the time-temperature history is generated. Since the transformation of sedimentary organic matter (kerogen) into petroleum (oil and gas) is a chemical reaction, it is governed by chemical kinetics i.e. time and temperature (in the geological setting pressure is of secondary importance). Thus, the use of chemical kinetics associated with a formation-specific, immature potential source rock (where available) from the basin of interest is considered a better practical approach rather than relying on software kinetic defaults, which are generally based on the chemical kinetics determined experimentally on Northern Hemisphere organic matter types. As part of the Australian source rock and fluids atlas project being undertaken by the Energy Systems Group’s Exploring for the Future (EFTF) program, compositional kinetics (1-, 2-, 4- and 14-component (phase) kinetics) were undertaken by GeoS4, Germany. The phase kinetics approach is outlined in Appendix 1. This report provides the compositional kinetics for potential source rocks from the Ordovician Goldwyer (Dapingian–Darriwilian) Formation and the Bongabinni (Sandbian) Formation, Carribuddy Group, Canning Basin, Western Australia.
-
Analytical results and associated sample and analysis metadata from the analysis of minerals in earth material samples.
-
This video is a flythrough around the coast of Australia shows the major topographic features of the seafloor around the continent. Starting in the south west the viewer can see the continental shelf and slope of the southern coast followed by the seamount chains and the Great Barrier Reef to the east. Continuing around the north then west coast the eastern end of the Java Trench is shown before returning to Perth and pulling out to show the whole continent. The bathymetry is shown at x12 exaggeration and uses a modern colour ramp. Video length 2min 30 sec.