From 1 - 10 / 147
  • Legacy product - no abstract available

  • Summary of GA's plans for marine seismic and reconnaissance surveys off southwestern Australia in 2008/09 as part of the Offshore Energy Security Program

  • Many aspects of the evolution and overall architecture of the Australian southern rifted margin are consistent with current models for the development of non-volcanic rifted margins. However, when examined in detail, several key features of the southern margin provide useful points of comparison with the Atlantic and Alpine Tethyan margins from which these models derive. Extensive petroleum industry and government seismic and geophysical data sets have enabled detailed mapping of the basins of the southern margin and an improved understanding of its tectonostratigraphic evolution. Australia's southern rifted continental margin extends for over 4000 km, from the structurally complex margin south of the Naturaliste Plateau in the west, to the transform plate boundary adjacent to the South Tasman Rise in the east. The margin contains a series of Middle Jurassic to Cenozoic basins-the Bight, Otway, Sorell, Gippsland and Bass basins, and smaller depocentres on the South Tasman Rise (STR). These basins, and the architecture of the margin, evolved through repeated episodes of extension and thermal subsidence leading up to, and following, the commencement of sea-floor spreading between Australia and Antarctica. Break-up took place diachronously along the margin, commencing in the west at ~83 Ma and concluding in the east at ~ 34 Ma. In general, break-up was not accompanied by significant magmatism and the margin is classified as 'non-volcanic' (or magma-poor). Initial NW-SE ultra-slow to slow seafloor spreading (latest Santonian-Early Eocene), followed by N-S directed fast spreading (Middle Eocene-present), resulted in: (1) an E-W oriented obliquely- to normally-rifted marginal segment extending from the westernmost Bight Basin to the central Otway Basin; (2) an approximately N-S oriented transform continental margin in the east (western Tasmania-STR), and (3) a transitional zone between those end-members (southern Otway-Sorell basins).

  • New 2D seismic data acquired in the Mentelle Basin by Geoscience Australia in 2008-09 has been used for a seismic facies study of the post-rift succession. The Mentelle Basin is a large deep to ultra deep-water, frontier basin located on Australia's southwestern margin about 200 km southwest of Perth. The study focused on the post-rift sequences deposited following the breakup between Australia and Greater India. Stratigraphic wells DSDP 258 and DSDP 264 provide age and lithological constraints on the upper portion of the post-rift succession down to mid-Albian strata. The depositional environment and lithology of the older sequences are based on analysis of the seismic facies, stratal geometries and comparisons to the age equivalent units in the south Perth Basin. Fourteen seismic facies were identified based on reflection continuity, amplitude and frequency, internal reflection configuration and external geometries. They range from high continuity, high amplitude, parallel sheet facies to low continuity, low amplitude, parallel, subparallel and chaotic sheet, wedge and basin fill facies. Channel and channel fill features are common in several facies along with a mounded facies (probably contourite) and its associated ponded turbidite fill. A progradational sigmoidal to oblique wedge facies occurs at several stratigraphic levels in the section. A chaotic mound facies, probably comprising debrite deposits, has a localised distribution.

  • Flexural backstripping applied to 5 seismic reflection lines has been used to constrain the distribution of lithosphere thinning, crustal structure and the location of the ocean-continent transition (OCT) of the southern Australian Bight Basin rifted margin. The amplitude of the anomalous subsidence in the southern margin of Australia was determined for each seismic line by means of residual depth anomalies (RDA) and included in all models. Sensitivity tests of predicted syn-breakup melt generated during lithosphere thinning and breakup were investigated assuming a magma-poor and a normal non-volcanic margin. The Bight Basin shows an apparent crustal segmentation between the Eyre-Recherche and the Ceduna-Recherche sub-basins. Whilst the lateral variation of lithosphere thinning in the Ceduna-Recherche sub-basin is gradual, in the Eyre-Recherche it is abrupt, predicting a highly extended continental crust underneath the Recherche sub-basin. Predicted ocean-continent transition (OCT) widths for the Bight Basin range from approximately 100 km to a maximum of 200 km, although the structure of the OCT itself is unclear. The predicted OCT determined from flexural backstripping compared with independent estimates of basement thickness derived from gravity inversion are in general agreement. Linear marine magnetic anomalies appear to be lying within the predicted OCT of the Bight Basin. If the magnetic anomalies are due to the presence of highly serpentinized peridotites and mafic bodies, the magnetic lineations cannot be used to constrain conventional seafloor spreading.

  • Under the Australian Government's Energy Security Program, Geoscience Australia conducted a seismic survey and a marine reconnaissance survey to acquire new geophysical data and obtain geological samples in frontier basins along the southwest Australian continental margin. Specific areas of interest include the Mentelle Basin, northern Perth Basin, Wallaby Plateau and southern Carnarvon Basin. The regional seismic survey acquired 7300 km of industry-standard 2D reflection seismic data using an 8 km solid streamer and 12 second record length, together with gravity and magnetic data. These new geophysical datasets, together with over 7000 km of re-processed open-file seismic data, will facilitate more detailed mapping of the regional geology, determination of total sediment thickness, interpretation of the nature and thickness of crust beneath the major depocentres, modelling of the tectonic evolution, and an assessment of the petroleum prospectivity of frontier basins along the southwest margin. The scientific aim of the marine reconnaissance survey was to collect swath bathymetry, potential field data, geological samples and biophysical data. Together with the new seismic data, samples recovered from frontier basins will assist in understanding the geological setting and petroleum prospectivity of these underexplored areas.

  • Cold seeps and hydrothermal vents can be detected by a number of oceanographic and geophysical techniques as well as the recovery of characteristic organisms. While the definitive identification of a seep or vent and its accompanying fauna is seldom unequivocal without significant effort. We suggest an approach to identifying associated VMEs in the CCAMLR region that uses the results of scientific surveys to identify confirmed features while documenting a series of criteria that can be used by fishing vessels to reduce the accidental disturbance of seep communities.