Isotope geochemistry
Type of resources
Keywords
Publication year
Topics
-
<div>The noble gas database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for molecular and noble gas isotopic analyses on natural gases sampled from boreholes and fluid inclusion gases from rocks sampled in boreholes and field sites. Data includes the borehole or field site location, sample depths, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular and noble gas isotopic compositions for the natural gas samples. The molecular data are presented in mole percent (mol%) and cubic centimetres (at Standard Pressure and Temperature) per cubic centimetre (ccSTP/cc). The noble gas isotopic values that can be measured are; Helium (He, <sup>3</sup>He, <sup>4</sup>He), Neon (Ne, <sup>20</sup>Ne, <sup>21</sup>Ne, <sup>22</sup>Ne), Argon (Ar, <sup>36</sup>Ar, <sup>38</sup>Ar, <sup>40</sup>Ar), Krypton (Kr, <sup>78</sup>Kr, <sup>80</sup>Kr, <sup>82<</sup>Kr, <sup>83</sup>Kr, <sup>84</sup>Kr, <sup>86</sup>Kr) and Xenon (Xe, <sup>124</sup>Xe, <sup>126</sup>Xe, <sup>128</sup>Xe, <sup>129</sup>Xe, <sup>130</sup>Xe, <sup>131</sup>Xe, <sup>132</sup>Xe, <sup>134</sup>Xe, <sup>136</sup>Xe) which are presented in cubic micrometres per cubic centimetre (mcc/cc), cubic nanometres per cubic centimetre (ncc/cc) and cubic picometres per cubic centimetre (pcc/cc). Acquisition of the molecular compounds are by gas chromatography (GC) and the isotopic ratios by mass spectrometry (MS). Compound concentrations that are below the detection limit (BDL) are reported as the value -99999.</div><div><br></div><div>These data provide source information about individual compounds in natural gases and can elucidate fluid migration pathways, irrespective of microbial activity, chemical reactions and changes in oxygen fugacity, which are useful in basin analysis with derived information being used to support Australian exploration for energy resources and helium. These data are collated from Geoscience Australia records and well completion reports. The noble gas data for natural gases and fluid inclusion gases are delivered in the Noble Gas Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div><div><br></div><div><br></div>
-
<div>The bulk rock stable isotopes database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the stable isotopic composition of sedimentary rocks with an emphasis on calcareous rocks and minerals sampled from boreholes and field sites. The stable isotopes of carbon, oxygen, strontium, hydrogen, nitrogen, and sulfur are measured by various laboratories in service and exploration companies, Australian government institutions, and universities, using a range of instruments. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and the stable isotopes ratios. The carbon (<sup>13</sup>C/<sup>12</sup>C) and oxygen (<sup>18</sup>O/<sup>16</sup>O) isotope ratios of calcareous rocks are expressed in delta notation (i.e., δ<sup>13</sup>C and δ<sup>18</sup>O) in parts per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) standard, with the δ<sup>18</sup>O values also reported relative to the Vienna Standard Mean Ocean Water (VSMOW) standard. Likewise, the stable isotope ratio of hydrogen (<sup> 2</sup>H/<sup> 1</sup>H) is presented in delta notation (δ<sup> 2</sup>H) in parts per mil (‰) relative to the VSMOW standard, the stable isotope ratio of nitrogen (<sup> 15</sup>N/<sup>14</sup>N) is presented in delta notation (δ<sup>15</sup>N) in parts per mil (‰) relative to the atmospheric air (AIR) standard, and the stable isotope ratio of sulfur (<sup> 34</sup>S/<sup> 32</sup>S) is presented in delta notation (δ<sup> 34</sup>S) relative to the Vienna Canyon Diablo Troilite (VCDT) standard. For carbonates, the strontium (<sup>87</sup>Sr/<sup>86</sup>Sr) isotope ratios are also provided.</div><div><br></div><div>These data are used to determine the isotopic compositions of sedimentary rock with emphasis on the carbonate within rocks, either as minerals, the mineral matrix or cements. The results for the carbonate rocks are used to determine paleotemperature, paleoenvironment and paleoclimate, and establish regional- and global-scale stratigraphic correlations. These data are collated from Geoscience Australia records, destructive analysis reports (DARs), well completion reports (WCRs), and literature. The stable isotope data for sedimentary rocks are delivered in the Stable Isotopes of Carbonates web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
<div>The bulk source rock database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the bulk properties of sedimentary rocks that contain organic matter and fluid inclusions taken from boreholes and field sites. The analyses are performed by various laboratories in service and exploration companies, Australian government institutions, and universities, using a range of instruments. Sedimentary rocks that contain organic matter are typically referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and various data types including; elemental composition, and the stable isotopes of carbon, hydrogen, nitrogen, and sulfur. Results are also included from methods that separate the extractable organic matter (EOM) from rocks into bulk components, such as the quantification of saturated hydrocarbon, aromatic hydrocarbon, resin and asphaltene (SARA) fractions according to their polarity. The stable carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (<sup>2</sup>H/<sup>1</sup>H) isotopic ratios of the EOM and derivative hydrocarbon fractions, as well as fluid inclusion oils, are presented in delta notation (i.e., δ<sup>13</sup>C and δ<sup>2</sup>H) in parts per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) standard.</div><div><br></div><div>These data are used to determine the molecular and isotopic compositions of organic matter within rocks and associated fluid inclusions and evaluate the potential for hydrocarbon generation in a basin. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The bulk data for sedimentary rocks are delivered in the Source Rock Bulk Properties and Stable Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
<b>Organic Geochemistry (ORGCHEM) Schema. Australian Source Rock and Fluid Atlas</b> The databases tables held within Geoscience Australia's Oracle Organic Geochemistry (ORGCHEM) Schema, together with other supporting Oracle databases (e.g., Borehole database (BOREHOLE), Australian Stratigraphic Units Database (ASUD), and the Reservoir, Facies and Shows (RESFACS) database), underpin the Australian Source Rock and Fluid Atlas web services and publications. These products provide information in an Australia-wide geological context on organic geochemistry, organic petrology and stable isotope data related primarily to sedimentary rocks and energy (petroleum and hydrogen) sample-based datasets used for the discovery and evaluation of sediment-hosted resources. The sample data provide the spatial distribution of source rocks and their derived petroleum fluids (natural gas and crude oil) taken from boreholes and field sites in onshore and offshore Australian provinces. Sample depth, stratigraphy, analytical methods, and other relevant metadata are also supplied with the analytical results. Sedimentary rocks that contain organic matter are referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. The data in the ORGCHEM schema are produced by a wide range of destructive analytical techniques conducted on samples submitted by industry under legislative requirements, as well as on samples collected by research projects undertaken by Geoscience Australia, state and territory geological organisations and scientific institutions including the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and universities. Data entered into the database tables are commonly sourced from both the basic and interpretive volumes of well completion reports (WCR) provided by the petroleum well operator to either the state and territory governments or, for offshore wells, to the Commonwealth Government under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGGSA) 2006 and previous Petroleum (submerged Lands) Act (PSLA) 1967. Data are also sourced from analyses conducted by Geoscience Australia’s laboratory and its predecessor organisations, the Australian Geological Survey Organisation (AGSO) and the Bureau of Mineral Resources (BMR). Other open file data from company announcements and reports, scientific publications and university theses are captured. The ORGCHEM database was created in 1990 by the BMR in response to industry requests for organic geochemistry data, featuring pyrolysis, vitrinite reflectance and carbon isotopic data (Boreham, 1990). Funding from the Australian Petroleum Cooperative Research Centre (1991–2003) enabled the organic geochemical data to be made publicly available at no cost via the petroleum wells web page from 2002 and included BOREHOLE, ORGCHEM and the Reservoir, Facies and Shows (RESFACS) databases. Investment by the Australian Government in Geoscience Australia’s Exploring for the Future (EFTF) program facilitated technological upgrades and established the current web services (Edwards et al., 2020). The extensive scope of the ORGCHEM schema has led to the development of numerous database tables and web services tailored to visualise the various datasets related to sedimentary rocks, in particular source rocks, crude oils and natural gases within the petroleum systems framework. These web services offer pathways to access the wealth of information contained within the ORGCHEM schema. Web services that facilitate the characterisation of source rocks (and kerogen) comprise data generated from programmed pyrolysis (e.g., Hawk, Rock-Eval, Source Rock Analyser), pyrolysis-gas chromatography (Py-GC) and kinetics analyses, and organic petrological studies (e.g., quantitation of maceral groups and organoclasts, vitrinite reflectance measurements) using reflected light microscopy. Collectively, these data are used to establish the occurrence of source rocks and the post-burial thermal history of sedimentary basins to evaluate the potential for hydrocarbon generation. Other web services provide data to characterise source rock extracts (i.e., solvent extracted organic matter), fluid inclusions and petroleum (e.g., natural gas, crude oil, bitumen) through the reporting of their bulk properties (e.g., API gravity, elemental composition) and molecular composition using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Also reported are the stable isotope ratios of carbon, hydrogen, nitrogen, oxygen and sulfur using gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and noble gas isotope abundances using ultimate high-resolution variable multicollection mass spectrometry. The stable isotopes of carbon, oxygen and strontium are also reported for sedimentary rocks containing carbonate either within the mineral matrix or in cements. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids, which comprise two key elements of petroleum systems analysis. Understanding a fluid’s physical properties and molecular composition are prerequisites for field development. The composition of petroleum determines its economic value and hence why the concentration of hydrocarbons (methane, wet gases, light and heavy oil) and hydrogen, helium and argon are important relative to those of nitrogen, carbon dioxide and hydrogen sulfide for gases, and heterocyclic compounds (nitrogen, oxygen or sulfur) found in the asphaltene, resin and polar fractions of crude oils. The web services and tools in the Geoscience Australia Data Discovery Portal (https://portal.ga.gov.au/), and specifically in the Source Rock and Fluid Atlas Persona (https://portal.ga.gov.au/persona/sra), allow the users to search, filter and select data based on various criteria, such as basin, formation, sample type, analysis type, and specific geochemical parameters. The web map services (WMS) and web feature services (WFS) enable the user to download data in a variety of formats (csv, Json, kml and shape file). The Source Rock and Fluid Atlas supports national resource assessments. The focus of the atlas is on the exploration and development of energy resources (i.e., petroleum and hydrogen) and the evaluation of resource commodities (i.e., helium and graphite). Some data held in the ORGCHEM tables are used for enhanced oil recovery and carbon capture, storage and utilisation projects. The objective of the atlas is to empower people to deliver Earth science excellence through data and digital capability. It benefits users who are interested in the exploration and development of Australia's energy resources by: • Providing a comprehensive and reliable source of information on the organic geochemistry of Australian source rocks • Enhancing the understanding of the spatial distribution, quality, and maturity of petroleum source rocks. • Facilitating the mapping of total petroleum and hydrogen systems and the assessment of the petroleum and hydrogen resource potential and prospectivity of Australian basins. • Facilitating the mapping of gases (e.g., methane, helium, carbon dioxide) within the geosphere as part of the transition to clean energy. • Enabling the integration and comparison of data from diverse sources and various acquisition methods, such as geological, geochemical, geophysical and geospatial data. • Providing data for integration into enhanced oil recovery and carbon capture, storage and utilisation projects. • Improving the accessibility and usability of data through user-friendly and interactive web-based interfaces. • Promoting the dissemination and sharing of data among Government, industry and community stakeholders. <b>References</b> Australian Petroleum Cooperative Research Centre (APCRC) 1991-2003. Australian Petroleum CRC (1991 - 2003), viewed 6 May 2024, https://www.eoas.info/bib/ASBS00862.htm and https://www.eoas.info/biogs/A001918b.htm#pub-resources Boreham, C. 1990. ORGCHEM Organic geochemical database. BMR Research Newsletter 13. Record 13:10-10. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/90326 Edwards, D.S., MacFarlane, S., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S.E., Ray, J., Raymond, O. 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/133751. <b>Citation</b> Edwards, D., Buckler, T. 2024. Organic Geochemistry (ORGCHEM) Schema. Australian Source Rock and Fluid Atlas. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/149422
-
<div>The Proterozoic basins of northern Australia have been the focus of regional hydrocarbon prospectivity studies undertaken by the Exploring for the Future program dedicated to increasing investment in resource exploration in northern Australia. As part of this program, a compilation of the compound-specific isotopic compositions of linear alkanes in source extracts, oils and oil stains from 21 boreholes of the greater McArthur Basin has been completed. The samples were analysed in Geoscience Australia’s Isotope and Organic Geochemistry Laboratory and the stable carbon and hydrogen isotopic data of individual alkanes are released in this report. </div>
-
<div>The soil gas database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for gas analyses undertaken by Geoscience Australia's laboratory on soil samples taken from shallow (down to 1 m below the surface) percussion holes. Data includes the percussion hole field site location, sample depth, analytical methods and other relevant metadata, as well as the molecular and isotopic compositions of the soil gas with air included in the reported results. Acquisition of the molecular compounds are by gas chromatography (GC) and the isotopic ratios by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The concentrations of argon (Ar), carbon dioxide (CO₂), nitrogen (N₂) and oxygen (O₂) are given in mole percent (mol%). The concentrations of carbon monoxide (CO), helium (He), hydrogen (H₂) and methane (C₁, CH₄) are given in parts per million (ppm). Compound concentrations that are below detection limit (BDL) are reported as the value -99999. The stable carbon (<sup>13</sup>C/<sup>12</sup>C) and nitrogen (<sup>15</sup>N/<sup>14</sup>N) isotopic ratios are presented in parts per mil (‰) and in delta notation as δ<sup>13</sup>C and δ<sup>15</sup>N, respectively.</div><div><br></div><div>Determining the individual sources and migration pathways of the components of natural gases found in the near surface are useful in basin analysis with derived information being used to support exploration for energy resources (petroleum and hydrogen) and helium in Australian provinces. These data are collated from Geoscience Australia records with the results being delivered in the Soil Gas web services on the Geoscience Australia Data Discovery portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
<div>The onshore Canning Basin in Western Australia was the focus of a regional hydrocarbon prospectivity assessment undertaken by the Exploring for the Future (EFTF) program dedicated to increasing investment in resource exploration in northern Australia, with the objective being to acquire new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface. Significant work has been carried out to deliver new pre-competitive data in the region including new seismic acquisition, drilling of a stratigraphic well, and geochemical analysis from historic exploration wells.</div><div><br></div><div>As part of this program, determination of the molecular and noble gas isotopic composition of natural gases from selected petroleum wells in the Canning Basin were undertaken by Smart Gas Sciences, under contract to Geoscience Australia, with results from these analyses being released in this report. This report provides additional data to determine the sources of natural gases in the Canning Basin and build on the availability of existing gas data, gas-gas correlations and gas-oil correlations. Noble gas isotopic data can be used in conjunction with carbon and hydrogen isotopic data to determine the origin of both inorganic and organic (hydrocarbon) gases. This information can be used in future geological programs to determine the source and distribution of hydrogen and helium in natural gases and support exploration programs.</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225 m investment by the Australian Government. </div><div>As part of this program, Geoscience Australia led two deep crustal reflection seismic surveys in the South Nicholson region, revealing the existence of the Carrara Sub-basin, a large sedimentary depocentre up to 8 km deep, beneath the Georgina Basin (Carr et al., 2019; 2020). The depocentre is believed to contain thick sequences of highly prospective Proterozoic rocks for base metals and unconventional hydrocarbons. To confirm geological interpretations and assess resource potential, the National Drilling Initiative, NDI Carrara 1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS) and the MinEx CRC (Geoscience Australia, 2021). NDI Carrara 1 is located on the western flank of the Carrara Sub-basin on the South Nicholson seismic line (17GA-SN1) (Figure 1.1; Figure 1.2), reaching a total depth of 1751 m, intersecting sedimentary rocks comprising ca. 630 m of Cambrian calcareous shales of the Georgina Basin and ca. 1100 m of Proterozoic carbonates and siliciclastics that include black shales of the Carrara Sub-basin.</div><div>This report presents data on selected rock samples from NDI Carrara 1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include bulk carbon isotope ratios (δ13C) of bitumens and isolated kerogens. In addition, a selection of 10 samples was analysed at Geoscience Australia for comparison purposes.</div><div><br></div>
-
<div>Archean crustal evolution, and its tectonic paradigm, can be directly linked to the evolution of the mantle, the hydrosphere-atmosphere, oxygenation of the Earth, and the formation and storage of ore deposits. Hence, it is vital to understand the evolution of the early crust if we are to understand our planet’s evolution as well as transformational events in its history.</div><div> The collection of vast amounts of isotopic data, especially U-Pb, Sm-Nd, Lu-Hf, and δ18O, over the last 30 years, has significantly advanced our understanding of crustal processes and their timing. However, we rarely look at these data in a spatial context. This study aims to constrain the time-space evolution of the south-east Superior Craton, Canada, by mapping the zircon Hf-O isotopes and trace element data from 148 Archean magmatic rocks (6340 total analyses).</div><div> In Lu-Hf space, the dataset demonstrates the highly juvenile nature of this region, with the majority of values between εHfi +6 and +2. When plotted spatially, the most juvenile data (+4 to +6 εHfi) delineate an E-W oriented zone, broadly in-line and sub-parallel to the Cadillac-Larder Lake and Porcupine-Destor structures. Surrounding this juvenile region is less juvenile crust (0 to +3 εHf). Corresponding δ18O values show that light to mantle-like data (3.0-5.6‰) correlate with the most juvenile crust imaged by the εHf, with heavier δ18O (5.8-7.5‰) plotting to the south, east and west of this zone. Zircon trace element proxies for hydration (Eu/Eu*), oxidation (ΔFMQ using Ti, Ce, U), and continental vs. oceanic origin (Ui/Yb) replicate the pattern observed in the Lu-Hf and δ18O. This suggests that, broadly, the SE Superior consists of a central E-W orientated juvenile zone consisting of the most reduced, least hydrated, least continental, and most high-temperature hydrothermally-altered crust. This zone is surrounded by crust which is more hydrated, oxidised, has a greater supracrustal δ18O component, and is slightly less juvenile. The major ore systems of the Abitibi subprovince, including VMS, gold and komatiite-hosted Ni-Cu-PGE systems, fall within the E-W highly-juvenile zone.</div><div> Current tectonic models for this region of the Superior Craton range from (1) long-lived Neoarchean subduction across the whole Abitibi tectono-thermal ‘event’ (2750-<2695 Ma) – ‘horizontal’ tectonics; and (2) a variety of non-arc processes such as plume-related crustal overthickening (i.e., oceanic plateau), sagduction/drip tectonics, and subcretion, amongst others – ‘vertical’ tectonics. Models combining arc and non-arc processes have also been suggested (i.e., plume-arc interaction), and our data broadly support a combined model. We propose the E-W zone delineated by the various geochemical data represents a paleo-rift zone, driven by ambient mantle or mantle plume processes. The dry, reduced, oceanic character of the zone appears to preclude an arc or back-arc setting prior to ca. 2.7 Ga. However, temporal changes in hydration, oxidation, and the increased heavy δ18O component at ca. 2.7 Ga suggest a major geodynamic shift, potentially marking the onset of subduction and associated compression. This is contribution 2020-050 of the Mineral Exploration Research Centre (MERC) Metal Earth project.</div><div> This Abstract was submitted/presented to the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)
-
<div>Strontium isotopes (87Sr/86Sr) are useful to trace processes in the Earth sciences as well as in forensic, archaeological, palaeontological, and ecological sciences. As very few large-scale Sr isoscapes exist in Australia, we have identified an opportunity to determine 87Sr/86Sr ratios on archived fluvial sediment samples from the low-density National Geochemical Survey of Australia (www.ga.gov.au/ngsa; last access: 15 December 2022). The present study targeted the northern parts of Western Australia, the Northern Territory and Queensland, north of 21.5 °S. The samples were taken mostly from a depth of ~60-80 cm in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse (< 2 mm) grain-size fraction was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release <em>total</em> Sr. The Sr was then separated by chromatography and the 87Sr/86Sr ratio determined by multicollector-inductively coupled plasma mass spectrometry. Results demonstrate a wide range of Sr isotopic values (0.7048 to 1.0330) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (> 100 km) patterns that appear to be broadly consistent with surface geology, regolith/soil type, and/or nearby outcropping bedrock. For instance, the extensive black clay soils of the Barkly Tableland define a > 500 km-long northwest-southeast-trending unradiogenic anomaly (87Sr/86Sr < 0.7182). Where sedimentary carbonate or mafic/ultramafic igneous rocks dominate, low to moderate 87Sr/86Sr values are generally recorded (medians of 0.7387 and 0.7422, respectively). In proximity to the outcropping Proterozoic metamorphic basement of the Tennant, McArthur, Murphy and Mount Isa geological regions, conversely, radiogenic 87Sr/86Sr values (> 0.7655) are observed. A potential correlation between mineralisation and elevated 87Sr/86Sr values in these regions needs to be investigated in greater detail. Our results to-date indicate that incorporating soil/regolith Sr isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting Sr isoscape and future models derived therefrom can also be utilised in forensic, archaeological, paleontological and ecological studies that aim to investigate, e.g., past and modern animal (including humans) dietary habits and migrations. The new spatial Sr isotope dataset for the northern Australia region is publicly available (de Caritat et al., 2022a; https://dx.doi.org/10.26186/147473; last access: 15 December 2022).</div> <b>Citation:</b> de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of northern Australia, <i>Earth Syst. Sci. Data</i>, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, <b>2023</b>.