Electrical and Electromagnetic Methods in Geophysics
Type of resources
Keywords
Publication year
Topics
-
Geoscience Australia (GA) is a leading promoter of airborne electromagnetic (AEM) surveying for regional mapping of cover thickness, under-cover basement geology and sedimentary basin architecture. Geoscience Australia flew three regional AEM surveys during the 2006-2011 Onshore Energy Security Program (OESP): Paterson (Western Australia, 2007-08); Pine Creek-Kombolgie (Northern Territory, 2009); and Frome (South Australia, 2010). Results from these surveys have produced a new understanding of the architecture of critical mineral system elements and mineral prospectivity (for a wide range of commodities) of these regions in the regolith, sedimentary basins and buried basement terrains. The OESP AEM survey data were processed using the National Computational Infrastructure (NCI) at the Australian National University to produce GIS-ready interpretation products and GOCADTM objects. The AEM data link scattered stratigraphic boreholes and seismic lines and allow the extrapolation of these 1D and 2D objects into 3D, often to explorable depths (~ 500 m). These data sets can then be combined with solid geology interpretations to allow researchers in government, industry and academia to build more reliable 3D models of basement geology, unconformities, the depth of weathering, structures, sedimentary facies changes and basin architecture across a wide area. The AEM data can also be used to describe the depth of weathering on unconformity surfaces that affects the geophysical signatures of underlying rocks. A number of 3D models developed at GA interpret the under-cover geology of cratons and mobile zones, the unconformity surfaces between these and the overlying sedimentary basins, and the architecture of those basins. These models are constructed primarily from AEM data using stratigraphic borehole control and show how AEM data can be used to map the cross-over area between surface geological mapping, stratigraphic drilling and seismic reflection mapping. These models can be used by minerals explorers to more confidently explore in areas of shallow to moderate sedimentary basin cover by providing more accurate cover thickness and depth to target information. The impacts of the three OESP AEM surveys are now beginning to be recognised. The success of the Paterson AEM Survey has led to the Geological Survey of Western Australia announcing a series of OESP-style regional AEM surveys for the future, the first of which (the Capricorn Orogen AEM Survey) completed acquisition in January 2014. Several new discoveries have been attributed to the OESP AEM data sets including deposits at Yeneena (copper) and Beadell (copper-lead-zinc) in the Paterson region, Thunderball (uranium) in the Pine Creek region and Farina (copper) in the Frome region. New tenements for uranium, copper and gold have also been announced on the results of these surveys. Regional AEM is now being applied in a joint State and Commonwealth Government initiative between GA, the Geological Survey of Queensland and the Geological Survey of New South Wales to assess the geology and prospectivity of the Southern Thomson Orogen around Hungerford and Eulo. These data will be used to map the depth of the unconformity between the Thomson Orogen rocks and overlying sedimentary basins, interpret the nature of covered basement rocks and provide more reliable cover thickness and depth to target information for explorers in this frontier area.
-
This package contains airborne electromagnetic (AEM) data from the "SkyTEM helicopter EM Southern Stuart region" survey which was flown over an area between Alice Springs and Tennant Creek, Northern Territory during July - August 2017. The area is comprised of 9666 line km in total. The aim of the survey is to provide at a reconnaissance scale: a) trends in regolith thickness and variability b) variations in bedrock conductivity c) conductivity of key bedrock (lithology related) conductive units under cover d) the groundwater resource potential of the region e) palaeovalley systems known to exist in the region. This report lists the SkyTEM system information and specifications relevant for this survey, and describes the processing carried out on the data. Geoscience Australia commissioned the survey as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region (https://www.ga.gov.au/eftf).
-
<p>Seawater intrusion (SWI) has become a serious threat to many groundwater resources in the last decades, especially in the areas of overexploitation due to population increase, or agriculture use. Significant attention was therefore brought to this complex groundwater problem in order to improve management of these affected aquifers. <p>Due to the high conductivity of seawater, SWI is a good target for many geophysical electromagnetic methods, such as airborne electromagnetic (AEM) or direct current resistivity methods. Airborne collected data are able to map extensive areas, and thus map the extent of SWI on a large scale along the coastlines. <p>However, zooming into a smaller scale, a discrepancy is often found between geophysical estimates and groundwater borehole data, due to different resolution, data sensitivity and also quality of geophysical and groundwater data. Numerous synthetic studies have shown the benefit of approaching the problem by evaluating both types of data in somewhat jointly manner. Research in combining the field geophysical and groundwater data for SWI cases is however very limited. <p>In this contribution we look at the AEM survey in Keep river, NT. It is a dense line survey with spacing of 100m, collected by SKyTEM 312 system for Geoscience Australia. Due to the character of AEM methods, the estimation of 3D (or 2D) subsurface conductivity is mathematically an ill-posed problem, giving multiple “equally good” models (here soil bulk conductivity) with the same data misfit. <p>The borehole data from this area together with geological mapping provide limited (1D) but valuable information about the seawater intrusion location and extent. We applied this “a priori” information coming from direct groundwater data to invert the selected lines of AEM data to obtain estimates that fit well the geophysical data but are also plausible with regard to geology and groundwater chemistry data.
-
Ross C Brodie Murray Richardson AEM system target resolvability analysis using a Monte Carlo inversion algorithm A reversible-jump Markov chain Monte Carlo inversion is used to generate an ensemble of millions of models that fit the forward response of a geoelectric target. Statistical properties of the ensemble are then used to assess the resolving power of the AEM system. Key words: Monte Carlo, AEM, inversion, resolvability.
-
ASEG 2016 Conference abstract. AMT and BBMT data have been applied by Geoscience Australia to determine the nature and thickness of cover, plus the basement architecture in regions around Australia. The depth of cover assessment produced by MT agrees with depth of cover assessments made by other geophysical techniques and will be tested by an ongoing program of stratigraphic drilling.
-
The Frome airborne electromagnetic (AEM) survey was designed to provide reliable pre-competitive AEM data to aid the search for energy and mineral resources around the Lake Frome region of South Australia. Flown in 2010, a total of 32,317 line kilometres of high quality airborne geophysical data were collected over an area of 95,450 km2 at a flight line spacing mostly of 2.5 km, opening to 5 km spaced lines in the Marree-Strzelecki Desert area to the north. The Lake Frome region hosts a large number of sandstone-hosted uranium deposits with known resources of ~60,000 tonnes of U3O8 including the working In Situ Recovery (ISR) operations at Beverley, Pepegoona, Pannikin and Honeymoon, and deposits at Four Mile East, Four Mile West, Yagdlin, Goulds Dam, Oban and Junction Dam. The aims of the Frome AEM Survey were to map critical elements of sandstone-hosted uranium mineral systems including basin architecture, palaeovalley morphology, sedimentary facies changes, hydrological connections between uranium sources and uranium sinks and structures that may control uranium mineralisation. Interpretations of the data show the utility of regional AEM surveying for mapping sandstone-hosted uranium mineral systems as well as for mapping geological surfaces and depth of cover over a wide area. Data from the Frome AEM Survey allow mineral explorers to put their own high-resolution AEM surveys into a regional context. Survey data were used to map a range of geological features that are associated with, or control the location of, sandstone-hosted uranium mineral systems and have been used to map and assess the prospectivity of new areas to the north of the Flinders Ranges.
-
Geoscience Australia (GA) is a leading promoter of airborne electromagnetic (AEM) surveying for regional mapping of cover thickness, under-cover basement geology and sedimentary basin architecture. Geoscience Australia flew three regional AEM surveys during the 2006-2011 Onshore Energy Security Program (OESP): Paterson (Western Australia, 2007-08); Pine Creek-Kombolgie (Northern Territory, 2009); and Frome (South Australia, 2010). Results from these surveys have produced a new understanding of the architecture of critical mineral system elements and mineral prospectivity (for a wide range of commodities) of these regions in the regolith, sedimentary basins and buried basement terrains. The OESP AEM survey data were processed using the National Computational Infrastructure (NCI) at the Australian National University to produce GIS-ready interpretation products and GOCADTM objects. The AEM data link scattered stratigraphic boreholes and seismic lines and allow the extrapolation of these 1D and 2D objects into 3D, often to explorable depths (~ 500 m). These data sets can then be combined with solid geology interpretations to allow researchers in government, industry and academia to build more reliable 3D models of basement geology, unconformities, the depth of weathering, structures, sedimentary facies changes and basin architecture across a wide area. The AEM data can also be used to describe the depth of weathering on unconformity surfaces that affects the geophysical signatures of underlying rocks. A number of 3D models developed at GA interpret the under-cover geology of cratons and mobile zones, the unconformity surfaces between these and the overlying sedimentary basins, and the architecture of those basins. These models are constructed primarily from AEM data using stratigraphic borehole control and show how AEM data can be used to map the cross-over area between surface geological mapping, stratigraphic drilling and seismic reflection mapping. These models can be used by minerals explorers to more confidently explore in areas of shallow to moderate sedimentary basin cover by providing more accurate cover thickness and depth to target information. The impacts of the three OESP AEM surveys are now beginning to be recognised. The success of the Paterson AEM Survey has led to the Geological Survey of Western Australia announcing a series of OESP-style regional AEM surveys for the future, the first of which (the Capricorn Orogen AEM Survey) completed acquisition in January 2014. Several new discoveries have been attributed to the OESP AEM data sets including deposits at Yeneena (copper) and Beadell (copper-lead-zinc) in the Paterson region, Thunderball (uranium) in the Pine Creek region and Farina (copper) in the Frome region. New tenements for uranium, copper and gold have also been announced on the results of these surveys. Regional AEM is now being applied in a joint State and Commonwealth Government initiative between GA, the Geological Survey of Queensland and the Geological Survey of New South Wales to assess the geology and prospectivity of the Southern Thomson Orogen around Hungerford and Eulo. These data will be used to map the depth of the unconformity between the Thomson Orogen rocks and overlying sedimentary basins, interpret the nature of covered basement rocks and provide more reliable cover thickness and depth to target information for explorers in this frontier area.
-
The Southern Thomson Orogen VTEM-plus® Airborne Electromagnetic Survey was conducted by Geoscience Australia as part of a collaborative project with its partners the Geological Survey of New South Wales and the Geological Survey of Queensland. The Survey contributes to the Australian Academy of Science's UNCOVER Initiative and Geoscience Australia's response to this as part of the National Mineral Exploration Strategy. Geoscience Australia contracted Geotech Airborne Ltd to acquire VTEM-plus® airborne electromagnetic (AEM) data over part of the Southern Thomson Orogen in Queensland and New South Wales in April and May 2014. The data were also processed by Geotech Airborne Ltd using its FullWaveForm® processing techniques. The survey is designed to assess the under-cover geology and prospectivity of the Southern Thomson Orogen around Hungerford and Eulo and straddles the New South Wales-Queensland border. The survey comprises two parts: 1. A regular regional survey on 5000 m spaced East-West lines totalling 3352 line km and covering an area of 16 261 km2. 2. Two regional traverses adjacent various roads totalling 915 line km. The Southern Thomson Orogen is a priority area for mineral systems research. Much of the area lies underneath cover of sedimentary basins and is a poorly-understood element of Australia's geology. The Orogen contains Cambro-Ordovician rocks that have potential for Iron Oxide Copper-Gold (IOCG) resources, porphyry copper-gold and Volcanic-Hosted Massive Sulphide (VHMS) deposits. Survey data will add to knowledge of cover thickness and character and will inform future geological mapping in the region. The Southern Thomson Orogen VTEM-plus® AEM Survey data release includes the final contractor supplied (Phase 1) datasets AEM survey. The data will be available from Geoscience Australia's web site free of charge: http://www.ga.gov.au/about/what-we-do/projects/minerals/current/continental-geophysics/airborne-electromagnetics The data release package includes: 1. Point-located electromagnetic dB/dt and derived B-field data with associated position, altimeter, orientation, magnetic gradiometer, and derived ground elevation data. These data are in ASCII column format with associated README and ASEG-GDF2 header files. The dataset consists of a separate download file for the: a. Main survey block Part 1 (flight lines 1000-1171) b. Main survey block Part 2 (flight lines 1180-1360) c. Traverse lines (flight lines 3000-3006 and 4000-4007) d. Repeat lines e. High altitude lines. 2. Waveform files for every flight containing the 192 kHz sampling of the transmitter current and receiver waveforms. 3. Point-located conductivity estimates derived using the EM Flow® conductivity depth imaging (CDI) algorithm with associated position, altimeter, orientation, magnetic gradiometer, and derived ground elevation data. Data include the conductivity estimate for each 5 m interval and selected depth slices. These data are in ASCII column format with associated README and ASEG-GDF2 header files. All regular survey, traverses and repeat lines are included in a single download file. 4. Gridded data, at 1 km cell size in, for the conductivity depth slices derived from the EM Flow® CDI data, magnetics and elevation data in ER Mapper® binary raster grid format with associated header files. 5. Graphical multiplots, in PDF format, for each flight line showing EM Flow® CDI sections and profiles of Z-component dB/dt data, magnetics, powerline monitor, height and orientation data. 6. Operations Report. 7. ESRI shapefiles and KML files of flight lines. 8. Metadata and License files.
-
Unconformity-type uranium deposits are high-grade and constitute over a third of the world's uranium resources. The Cariewerloo Basin, South Australia, is a region of high prospectivity for unconformity-related uranium as it contains many similarities to an Athabasca-style unconformity deposit. These include features such as Mesoproterozoic red-bed sediments, Paleoproterozoic reduced crystalline basement enriched in uranium (~15-20 ppm) and reactivated basement faults. An airborne electromagnetic (AEM) survey was flown in 2010 using the Fugro TEMPEST system to delineate the unconformity surface at the base of the Pandurra Formation. However highly-conductive regolith attenuated the signal in the northern and eastern regions, requiring application of deeper geophysical methods. In 2012 a magnetotelluric (MT) survey was conducted along a 110 km transect of the north-south trending AEM line. MT data were collected at 29 stations and successfully imaged the depth to basement, and additionally providing evidence for deeper fluid pathways. The AEM data were integrated into the regularisation mesh as a-priori information generating an AEM constrained resistivity model and also correcting for static shift. The AEM constrained resistivity model best resolved resistive structures, allowing strong contrast with conductive zones.
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. As part of Exploring for the Future (EFTF) program with contributions from the Geological Survey of Queensland, long-period magnetotelluric (MT) data for the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) were collected using Geoscience Australia's LEMI-424 instruments on a half-degree grid across Queensland from April 2021 to November 2022. This survey aims to map the electrical resistivity structures in the region. These results provide additional information about the lithospheric architecture and geodynamic processes, as well as valuable precompetitive data for resource exploration in this region. This data release package includes processed MT data, a preferred 3D resistivity model projected to GDA94 MGA Zone 54 and associated information for this project. The processed MT data were stored in EDI format, which is the industry standard format defined by the Society of Exploration Geophysicists. The preferred 3D resistivity model was derived from previous EFTF AusLAMP data acquired from 2016-2019 and recently acquired AusLAMP data in Queensland. The model is in SGrid format and geo-referenced TIFF format.