From 1 - 4 / 4
  • This data release contains accurate positional data for groundwater boreholes in terms of horizontal location as well as elevation of the top of casing protectors. Twenty-four boreholes located in the Nulla and McBride basalt provinces have had DGPS survey results compiled and are presented. Using 95% confidence intervals, the horizontal uncertainties are less than 1.2m and vertical uncertainties less than 0.9m. These results are a substantial improvement, particularly on the uncertainty of elevations, and as such allow water levels need to be compared between bores on a comparable datum, to enable a regional hydrogeological understanding. Quantifying the uncertainties in elevation data adds robustness to the analysis of water levels across the region rather than detracting from it.

  • The natural environment is facing increasing human disturbance. Many species of flora are extinct or endangered. To improve the efficiency of ecological management and monitoring, this study proposed to establish a video monitoring network to protect a world-famous rare flora: Golden Camellia, in Fangcheng nature reserve, Guangxi Province, China. Based on the model of LSCP (location set covering problem), we attempted to establish full monitoring coverage of camellias while minimizing the number of video cameras. The model was solved by integer programming. In case of multiple solutions, this study proposed two additional criterions, maximize monitoring area and maximize overlapping count, to eliminate suboptimal solutions. The two optimal solutions included 80 cameras covering a monitoring area of over 5500 ha. Together, these cameras are able to monitor 97.2% of golden camellia in the reserve. The study suggests that this location optimization model can be used to improve the conservation effectiveness of rare species. <b>Citation:</b> Kun Zhang, Zhi Huang, Songlin Zhang, Using an optimization algorithm to establish a network of video surveillance for the protection of Golden Camellia,<i> Ecological Informatics,</i> Volume 42, 2017, Pages 32-37, ISSN 1574-9541, https://doi.org/10.1016/j.ecoinf.2017.08.004.

  • <div>The Magnetotelluric (MT) Sites database contains the location of sites where magnetotelluric (MT) data have been acquired by surveys. These surveys have been undertaken by Geoscience Australia and its predecessor organisations and collaborative partners including, but not limited to, the Geological Survey of New South Wales, the Northern Territory Geological Survey, the Geological Survey of Queensland, the Geological Survey of South Australia, Mineral Resources Tasmania, the Geological Survey of Victoria and the Geological Survey of Western Australia and their parent government departments, AuScope, the University of Adelaide, Curtin University and University of Tasmania. Database development was completed as part of Exploring for the Future (EFTF) and the database will utilised for ongoing storage of site information from future MT acquisition projects beyond EFTF. Location, elevation, data acquisition date and instrument information are provided with each site. The MT Sites database is a subset of tables within the larger Geophysical Surveys and Datasets Database. </div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal&nbsp;(https://portal.ga.gov.au/), use Magnetotelluric as your search term to find the relevant data.</div>

  • The Australian Gazetteer service provides authoritative information on the location, and spelling of approved place names. The Australian Gazetteer is a subset of information held by the relevant State, Territory and Commonwealth naming authorities. Additional authoritative information has also been sourced from the Australian Hydrographic Service, Australian Antarctic Division and Geoscience Australia.