From 1 - 10 / 140
  • This dataset maps the geomorphic habitat environments (facies) for 213 Queensland coastal waterways. This version of the dataset includes 73 newly mapped estuaries, classified as 'Near pristine'. The classification system contains 12 easily identifiable and representative environments: Barrier/back-barrier, Bedrock, Central Basin, Channel, Coral, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Mangrove, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. Southern and central Great Barrier Reef lagoon coasts have a broad spectrum of river, tide and wave- dominated estuaries.

  • The Australian Government, through the Department of Climate Change and Energy Efficiency, recognises the need for information that allows communities to decide on a strategy for climate change adaptation. A first pass national assessment of vulnerability to Australia's coast identified that considerable sections of the coast could be impacted by sea level rise. This assessment however, did not provide sufficient detail to allow adaptation planning at a local level. Accounting for sea level rise in planning procedures requires knowledge of the future coastline, which is still lacking. Modelling the coastline given sea level rise is complex, however. Erosion will alter the shores in varied ways around Australia's coastline, and extreme events will inundate areas that currently appear to be well above the projected sea level. Moreover, the current planning practice of designating zones with acceptable inundation risk is no longer practical when considering climate change, as this is likely to remain uncertain for some time. Geoscience Australia, with support from the DCCEE, has now conducted a more detailed study for a local area in Western Australia that was identified to be at high risk in the national assessment. The aim of the project was to develop a localised approach so that information could be developed to support adaptation to climate change in planning decisions at the community level. The approach included modelling a historical tropical cyclone and its associated storm surge for a range of sea level rise scenarios. The approach also included a shoreline translation model that forecast changes in coastal sediment transport. Inundation footprints were created and integrated with Geoscience Australia's national exposure information system, NEXIS, to develop impact assessments on building assets, roads and railways. Studies such as this can be a first step towards enabling the planning process to adapt to increased risk.

  • Results are given of investigations carried out to detect any variation in the relative proportions of the several heavy minerals in heavy concentrates separated out from beach sands of the Broadbeach Recreational Area. The possible variation of the thoria content of monazite in the area is also investigated. Results indicate a systematic variation from east to west in the proportion of Zircon, rutile and ilmenite in the concentrates. The thoria content of the monazite in the area is shown to be constant within experimental limits.

  • Workshop Proceedings of the National Coastal Groundwater Management Knowledge Transfer Workshop held in Canberra on 28-29 May 2013

  • Objectives 1. To determine the horizontal and vertical extent of hydrogen sulphide (H2S) in Lake Wollumboola sediments. 2. To examine controls on H2S gas production in Lake Wollumboola sediments. Activities 1. During a visit to Lake Wollumboola in November 2001, Geoscience Australia collected sediment samples, from sediment cores to depths of generally 180 mm, and occasionally to 600 mm. 2. The 12 sample sites chosen incorporate the three different sediment types of Lake Wollumboola; marine sands on the eastern side of the lake, central basin muds in the relatively deeper central part of the lake, and fluvial sands and muds on the western side of the lake where the creeks are depositing sediment from the catchment. 3. We measured H2S in sediment porewaters, immediately after sample collection. Porewater sulphate and chloride were measured in the laboratory. 4. Total sulphur, total iron, and total organic carbon were measured in the laboratories at Geoscience Australia, after the survey. Background Bacteria, which occur naturally in Lake Wollumboola's sediments, produce H2S when they breakdown organic matter. The bacteria, which are called sulphate reducing bacteria, utilise sulfate from the water to breakdown the organic matter, and can only operate under oxygen free (anoxic) conditions. Key Findings 1. H2S production in Lake Wollumboola is extensive. The average H2S concentration in the central basin muds and fluvial sands and muds is ~3000 M. At one site in the central basin muds, H2S concentration is greater than 10 000 M. In contrast, the concentration of H2S in the sandy marine sediments on the eastern side of the lake is low in comparison to the central basin muds and fluvial delta sands and muds. The average H2S concentration in the marine sands is 158 M. 2 Measurements of total organic carbon show that the amount of organic matter is higher in the central basin muds and fluvial delta sands and muds (~3.5 wt%) than in the marine sands (~0.8 wt%). Organic matter is the fuel for H2S production. High H2S concentrations in the central basin muds and fluvial delta sands and muds are probably a result of their high organic matter contents. 3. Depth profiles of H2S concentration and sulphate depletion in the central basin muds and fluvial sands and muds show that H2S production is occurring right at the sediment surface and down to depths of 80-100 mm. This implies that H2S could escape directly into the atmosphere, when the central basin muds and fluvial sands and muds are exposed during times of low lake levels. It also suggests that H2S could build up in the bottom layer of water directly above these sediments if the water remains anoxic for periods of time. 4. Total sulphide measurements show that H2S is reacting with iron in the sediments, forming iron sulphide minerals. Iron is an important trapping mechanism for H2S, preventing its escape to the atmosphere. Most sites, however, do not have enough `reactive iron' available and H2S concentrations are able to build-up in the porewaters of the sediment.

  • There is growing global concern for the impact of increased fluvial sediment loads on tropical coral reefs and seagrass ecosystems. The Fitzroy River is a macrotidal, tide-dominated estuary in the dry tropics of central Queensland and is a major contributor of sediment to the southern Great Barrier Reef (GBR) lagoon. The estuary currently receives most of its sediment during large episodic flood events commonly associated with cyclonic depressions. The sediment dynamics of macrotidal estuaries and especially of wet-dry tropical systems, with intermittent flows and sediment discharge are poorly understood. Average annual sediment budgets for such a system are also difficult to estimate due to the sporadic nature of flood discharge events. Therefore we have estimated a long-term sediment accumulation rate of catchment-derived sediment trapped in the estuary using the Holocene stratigraphic sequence, determined from a series of sediment cores, dated with radiocarbon and optically stimulated luminescence (OSL), and integrated with industry borehole data. We estimate that 17,400 million tonnes (Mt) of river sediment has accumulated in the estuary during the last 8000 years. This suggests a minimum mean annual bulk sediment discharge of the Fitzroy River of 2000 kt yr-1. This estimated 2175 kilotonnes per year (kt yr-1) of bulk sediment is equivalent to 25% of the estimated average annual modern bulk sediment discharge of the Fitzroy River of 8800 kt yr-1, (Kelly and Wong, 1996) suggesting that the sediment trapping efficiency of the Fitzroy estuary during the Holocene has been approximately 25%. This implies that 75% of the river sediment has been exported from the estuary into Keppel Bay and the adjacent GBR lagoon during the Holocene. With minimal accommodation space left in the floodplain, modern sediment accumulation appears to be focussed around the mangroves and tidal creeks, which cover an area of 130 km2. Cores from the tidal creeks were dated using 137Cs, excess 210Pb, and OSL and display sedimentation rates of approximately 1.5 cm yr-1 for the last 45-120 years, or 1700 kt yr-1, and suggest a modern sediment trapping efficiency for the estuary of around 19%. These results provide useful insights into the long-term sedimentation and quantification of the sediment trapping efficiency of a subtropical macro-tidal estuary with episodic floods, where sediment trapping will vary seasonally and inter-annually.

  • Keppel Bay is a macrotidal environment that represents the interface of the large catchment of the Fitzroy River with the southern GBR continental shelf. In this study, we assessed the distribution of sediments and their depositional characteristics using a combination of sediment sampling, and acoustic (sonar) seabed mapping tools. Using statistical techniques, we classified the seabed sediments of Keppel Bay into five distinct classes, based on sediment grainsize, chemical composition, and modelled seabed hear stress (the influence of waves and tidal currents).

  • The upper Swan River estuary located in the eastern suburban area of Perth in Western Australia experiences periods of poor water quality in the form high nutrient levels, anoxic bottom water conditions and occasional nuisance algae blooms. It has long been suspected that oxygen uptake and nutrient release from estuarine sediments are major drivers for these poor water quality conditions. Geoscience Australia in conjunction with the Department of Water in Western Australia investigated water quality in the upper Swan River estuary through water and sediment quality studies in October 2006, September 2007 and May 2008. The objectives of these studies were (1) to characterise the distribution of sediments, in particular to identify areas of high nutrient release, (2) to better understand conditions leading to high oxygen consumption and nutrient release, and (3) to determine the influence of the bottom water oxygen status on nutrient release from sediments.

  • Note that this Record has now been published as Record 2014/050, GeoCat number 78802