From 1 - 10 / 11
  • This petroleum systems summary report provides a compilation of the current understanding of petroleum systems for the Canning Basin. The contents of this report are also available via the Geoscience Australia Portal at https://portal.ga.gov.au/, called The Petroleum Systems Summary Assessment Tool (Edwards et al., 2020). Three summaries have been developed as part of the Exploring for the Future (EFTF) program (Czarnota et al., 2020); the McArthur Basin, the Canning Basin, and a combined summary of the South Nicholson Basin and Isa Superbasin region. The petroleum systems summary reports aim to facilitate exploration by summarising key datasets related to conventional and unconventional hydrocarbon exploration, enabling a quick, high-level assessment of the hydrocarbon prospectivity of the region.

  • This petroleum systems summary report provides a compilation of the current understanding of petroleum systems for the South Nicholson Basin and Isa Superbasin region. The contents of this report are also available via the Geoscience Australia Portal at https://portal.ga.gov.au/, called The Petroleum Systems Summary Assessment Tool (Edwards et al., 2020). Three summaries have been developed as part of the Exploring for the Future (EFTF) program (Czarnota et al., 2020); the McArthur Basin, the Canning Basin, and a combined summary of the South Nicholson Basin and Isa Superbasin region. The petroleum systems summary reports aim to facilitate exploration by summarizing key datasets related to conventional and unconventional hydrocarbon exploration, enabling a quick, high-level assessment the hydrocarbon prospectivity of the region.

  • Exploring for the Future Roadshow- Regional petroleum systems visualised in the EFTF Data Discovery Portal. A summary of petroleum systems of the Canning Basin and regional Meso- and Paleoproterozoic basins of northern Australia, and an introduction to the EFTF Data Discovery Portal

  • The Browse Basin is located offshore on Australia’s North West Shelf and is a proven hydrocarbon province hosting gas with associated condensate. Oil reserves in the area are small with most in-place oil likely the result of hydrocarbon fluids experiencing pressures less than their saturation pressure resulting in dual phase fluids, coupled with secondary alteration processes and gas leakage. This study reviews the distribution, quality and maturity of source rocks and fluid characteristics in the Browse Basin. All publicly-available Total Organic Carbon (TOC) and Rock-Eval pyrolysis data were compiled and quality checked to determine multiple, viable source rock units. Jurassic and Cretaceous source rock distributions and net thickness were studied using integrated seismic and well log lithofacies mapping, combined with organic geochemistry data. Source rock transformation ratio and generation potential were investigated using a regional pseudo-3D petroleum systems model constructed from new seismic interpretations and calibrated using temperature and maturity data from 34 wells. Results show that the Jurassic Plover Formation (J10-J20 supersequences) coals and carbonaceous shales are effective, primarily gas-prone source rocks which may have some liquid potential when the generated gas migrates into shallow reservoirs at reduced pressures. Additional sources of hydrocarbons include shales in the Upper Jurassic lower Vulcan Formation (J40 supersequence), Lower Cretaceous upper Vulcan Formation (K10 supersequence) and Echuca Shoals Formation (K20-K30 supersequences). However, these are likely to have only expelled hydrocarbons locally in areas of optimal organic-richness and maturity. Key uncertainties include TOC and HI variability due to lack of well penetration in the depocentres. The molecular composition of the fluids were compiled and quality checked and used to investigate the relationship between the saturation pressure and condensate-gas ratio (CGR). By combining the bulk properties and molecular and isotopic compositions of the fluids with the geochemical compositions of the source rocks in a petroleum systems model, four Mesozoic petroleum systems have been identified and mapped to help understand the source rock potential and fluid characters for the Browse Basin.

  • <p>The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the North West Margin Energy Studies Section (NWMES). This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. <p>The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018) and Dorado 1 (2018) in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata. The current study aims to better understand this new petroleum system and establish its extent. <p>As part of this program, TOC and Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples from the well Roc 2 to establish their hydrocarbon-generating potential and thermal maturity.

  • <div>The bulk source rock database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the bulk properties of sedimentary rocks that contain organic matter and fluid inclusions taken from boreholes and field sites. The analyses are performed by various laboratories in service and exploration companies, Australian government institutions, and universities, using a range of instruments. Sedimentary rocks that contain organic matter are typically referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and various data types including; elemental composition, and the stable isotopes of carbon, hydrogen, nitrogen, and sulfur. Results are also included from methods that separate the extractable organic matter (EOM) from rocks into bulk components, such as the quantification of saturated hydrocarbon, aromatic hydrocarbon, resin and asphaltene (SARA) fractions according to their polarity. The stable carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (<sup>2</sup>H/<sup>1</sup>H) isotopic ratios of the EOM and derivative hydrocarbon fractions, as well as fluid inclusion oils, are presented in delta notation (i.e., &delta;<sup>13</sup>C and &delta;<sup>2</sup>H) in parts per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) standard.</div><div><br></div><div>These data are used to determine the molecular and isotopic compositions of organic matter within rocks and associated fluid inclusions and evaluate the potential for hydrocarbon generation in a basin. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The bulk data for sedimentary rocks are delivered in the Source Rock Bulk Properties and Stable Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • <div>The Gas Chromatography-Mass Spectrometry (GC-MS) biomarker database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the molecular (biomarker) compositions of source rock extracts and petroleum liquids (e.g., condensate, crude oil, bitumen) sampled from boreholes and field sites. These analyses are undertaken by various laboratories in service and exploration companies, Australian government institutions and universities using either gas chromatography-mass spectrometry (GC-MS) or gas chromatography-mass spectrometry-mass spectrometry (GC-MS-MS). Data includes the borehole or field site location, sample depth, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular composition of aliphatic hydrocarbons, aromatic hydrocarbons and heterocyclic compounds, which contain either nitrogen, oxygen or sulfur.</div><div><br></div><div>These data provide information about the molecular composition of the source rock and its generated petroleum, enabling the determination of the type of organic matter and depositional environment of the source rock and its thermal maturity. Interpretation of these data enable the determination of oil-source and oil-oil correlations, migration pathways, and any secondary alteration of the generated fluids. This information is useful for mapping total petroleum systems, and the assessment of sediment-hosted resources. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The biomarker data for crude oils and source rocks are delivered in the Petroleum and Rock Composition – Biomarker web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • <div>The pyrolysis-reflectance tie database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases, which combine key properties related to thermal maturity. These data are typically used as input parameters in basin analysis and petroleum systems modelling to assist with the discovery and evaluation of sediment-hosted energy resources. The programmed pyrolysis analyses and the maceral reflectance analyses undertaken using reflected light microscopy are conducted on rock samples, either as cores, cuttings or rock chips, taken from boreholes and field sites in Australian sedimentary basins. The full datasets are available in the pyrolysis, vitrinite reflectance, maceral reflectance and organoclast maturity web services. These analyses are performed by various laboratories in service and exploration companies, Australian government institutions and universities using a range of instruments.</div><div><br></div><div>These data are collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The data are delivered in the Combined Pyrolysis and Vitrinite Reflectance web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 3 - 15th August talks included: <b>Session 1 – Hydrogen opportunities across Australia</b> <a href="https://youtu.be/pA9ft3-7BtU?si=V0-ccAmHHIYJIZAo">Hydrogen storage opportunities and the role of depleted gas fields</a> - Dr Eric Tenthorey <a href="https://youtu.be/MJFhP57nnd0?si=ECO7OFTCak78Gn1M">The Green Steel Economic Fairways Mapper</a> - Dr Marcus Haynes <a href="https://youtu.be/M95FOQMRC7o?si=FyP7CuDEL0HEdzPw">Natural hydrogen: The Australian context</a> - Chris Boreham <b>Session 2 – Sedimentary basin resource potential – source rocks, carbon capture and storage (CCS) and groundwater</b> <a href="https://youtu.be/44qPlV7h3os?si=wfQqxQ81Obhc_ThE">Australian Source Rock and Fluid Atlas - Accessible visions built on historical data archives</a> - Dr Dianne Edwards <a href="https://youtu.be/WcJdSzsADV8?si=aH5aYbpnjaz3Qwj9">CO2: Where can we put it and how much will it cost?</a> - Claire Patterson <a href="https://youtu.be/Y8sA-iR86c8?si=CUsERoEkNDvIwMtc">National aquifer framework: Putting the geology into hydrogeology</a> - Dr Nadege Rollet <b>Session 3 – Towards a national inventory of resource potential and sustainable development</b> <a href="https://youtu.be/K5xGpwaIWgg?si=2s0AKuNpu30sV1Pu">Towards a national inventory of mineral potential</a> - Dr Arianne Ford <a href="https://youtu.be/XKmEXwQzbZ0?si=yAMQMjsNCGkAQUMh">Towards an inventory of mine waste potential</a> - Dr Anita Parbhakar-Fox <a href="https://youtu.be/0AleUvr2F78?si=zS4xEsUYtARywB1j">ESG mapping of the Australian mining sector: A critical review of spatial datasets for decision making</a> - Dr Eleonore Lebre View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 3 - Session 1 - <a href="https://www.youtube.com/watch?v=Ho6QFMIleuE">Hydrogen opportunities across Australia</a> 2024 Showcase Day 3 - Session 2 - <a href="https://www.youtube.com/watch?v=ePZfgEwo0m4">Sedimentary basin resource potential – source rocks, carbon capture and storage (CCS) and groundwater</a> 2024 Showcase Day 3 - Session 3 - <a href="https://www.youtube.com/watch?v=CjsZVK4h6Dk">Towards a national inventory of resource potential and sustainable development</a>

  • <div>The pyrolysis-gas chromatography database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) database and supporting oracle databases for open system pyrolysis-gas chromatography (pyrolysis-GC) analyses performed on either source rocks or kerogen samples taken from boreholes and field sites. Sedimentary rocks that contain organic matter are referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. The analyses are undertaken by various laboratories in service and exploration companies using a range of instruments. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and the molecular composition of the pyrolysates. The concentrations of the aliphatic hydrocarbon, aromatic hydrocarbon and organic sulfur compounds are given in several units of measure [e.g., percent (resolved compounds) in the S2 peak (wt% S2), milligrams per gram of rock (mg/g rock), micrograms per gram of kerogen (mg/g kerogen) etc.].</div><div><br></div><div>These data are used to determine the organic richness, kerogen type and thermal maturity of source rocks in sedimentary basins. The results are used as input parameters in basin analysis and petroleum systems modelling to evaluate the potential for hydrocarbon generation in a sedimentary basin. These data are collated from destructive analysis reports (DARs), well completion reports (WCRs) and literature. The data are delivered in the Source Rock Pyrolysis-Gas Chromatography web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div><div><br></div>