Satellite imagery
Type of resources
Keywords
Publication year
Distribution Formats
Scale
Topics
-
1. Band ratio: (B6+B9/(B7+B8) Blue is low content, Red is high content (potentially includes: calcite, dolomite, magnesite, chlorite, epidote, amphibole, talc, serpentine) Useful for mapping: (1) "hydrated" ferromagnesian rocks rich in OH-bearing tri-octahedral silicates like actinolite, serpentine, chlorite and talc; (2) carbonate-rich rocks, including shelf (palaeo-reef) and valley carbonates(calcretes, dolocretes and magnecretes); and (3) lithology-overprinting hydrothermal alteration, e.g. "propyllitic alteration" comprising chlorite, amphibole and carbonate. The nature (composition) of the silicate or carbonate mineral can be further assessed using the MgOH composition product.
-
1. Band ratio: (B10+B12)/B11 Blue is low gypsum content. Red is high gypsum content. Accuracy: Very Low: Strongly complicated by dry vegetation and often inversely correlated with quartz-rich materials. Affected by discontinuous line-striping. Use in combination with FeOH product which is also sensitive to gypsum. Geoscience Applications: Useful for mapping: (1) evaporative environments (e.g. salt lakes) and associated arid aeolian systems (e.g. dunes); (2) acid waters (e.g. from oxidising sulphides) invading carbonate rich materials including around mine environments; and (3) hydrothermal (e.g. volcanic) systems.
-
This is the parent datafile of a dataset that comprises a set of 14+ geoscience products made up of mosaiced ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) scenes across Australia. The individual geoscience products are a combination of bands and band ratios to highlight different mineral groups and parameters including: False colour composite CSIRO Landsat TM Regolith Ratios Green vegetation content Ferric oxide content Ferric oxide composition Ferrous iron index Opaque index AlOH group content AlOH group composition Kaolin group index FeOH group content MgOH group content MgOH group composition Ferrous iron content in MgOH/carbonate Surface mineral group distribution (relative abundance and composition)
-
This collection contains satellite imagery or Earth Observations from space created by Geoscience Australia. Among others, the collection includes data from various satellite sensors including Landsat Thematic Mapper and Multi-Spectral Scanner, Terra and Aqua MODIS.
-
A `weighted geometric median’ approach has been used to estimate the median surface reflectance of the barest state (i.e., least vegetation) observed through Landsat-8 OLI observations from 2013 to September 2018 to generate a six-band Landsat-8 Barest Earth pixel composite mosaic over the Australian continent. The bands include BLUE (0.452 - 0.512), GREEN (0.533 - 0.590), RED, (0.636 - 0.673) NIR (0.851 - 0.879), SWIR1 (1.566 - 1.651) and SWIR2 (2.107 - 2.294) wavelength regions. The weighted median approach is robust to outliers (such as cloud, shadows, saturation, corrupted pixels) and also maintains the relationship between all the spectral wavelengths in the spectra observed through time. The product reduces the influence of vegetation and allows for more direct mapping of soil and rock mineralogy. Reference: Dale Roberts, John Wilford, and Omar Ghattas (2018). Revealing the Australian Continent at its Barest, submitted.
-
<b>This record was retired 29/03/2022 with approval from S.Oliver as it has been superseded by eCat 145498 Geoscience Australia Landsat Fractional Cover Collection 3</b> The Fractional Cover (FC) algorithm was developed by the Joint Remote Sensing Research Program and is described in described in Scarth et al. (2010). It has been implemented by Geoscience Australia for every observation from Landsat Thematic Mapper (Landsat 5), Enhanced Thematic Mapper (Landsat 7) and Operational Land Imager (Landsat 8) acquired since 1987. It is calculated from surface reflectance (SR-N_25_2.0.0). FC_25 provides a 25m scale fractional cover representation of the proportions of green or photosynthetic vegetation, non-photosynthetic vegetation, and bare surface cover across the Australian continent. The fractions are retrieved by inverting multiple linear regression estimates and using synthetic endmembers in a constrained non-negative least squares unmixing model. For further information please see the articles below describing the method implemented which are free to read: - Scarth, P, Roder, A and Schmidt, M 2010, 'Tracking grazing pressure and climate interaction - the role of Landsat fractional cover in time series analysis', Proceedings of the 15th Australasian Remote Sensing and Photogrammetry Conference, Schmidt, M, Denham, R and Scarth, P 2010, 'Fractional ground cover monitoring of pastures and agricultural areas in Queensland', Proceedings of the 15th Australasian Remote Sensing and Photogrammetry Conference A summary of the algorithm developed by the Joint Remote Sensing Centre is also available from the AusCover website: http://data.auscover.org.au/xwiki/bin/view/Product+pages/Landsat+Fractional+Cover Fractional cover data can be used to identify large scale patterns and trends and inform evidence based decision making and policy on topics including wind and water erosion risk, soil carbon dynamics, land management practices and rangeland condition. This information could enable policy agencies, natural and agricultural land resource managers, and scientists to monitor land conditions over large areas over long time frames.
-
The Sentinel-2 Bare Earth thematic product provides the first national scale mosaic of the Australian continent to support improved mapping of soil and geology. The bare earth algorithm using all available Sentinel-2 A and Sentinel-2 B observations up to September 2020 preferentially weights bare pixels through time to significantly reduce the effect of seasonal vegetation in the imagery. The result are image pixels that are more likely to reflect the mineralogy and/or geochemistry of soil and bedrock. The algorithm uses a high-dimensional weighted geometric median approach that maintains the spectral relationships across all Sentinel-2 bands. A similar bare earth algorithm has been applied to Geoscience Australia’s deeper Landsat time series archive (please search for "Landsat barest Earth". Both bare earth products have spectral bands in the visible near infrared and shortwave infrared region of the electromagnetic spectrum. However, the main visible and near-infrared Sentinel-2 bands have a spatial resolution of 10 meters compared to 30m for the Landsat TM equivalents. The weighted median approach is robust to outliers (such as cloud, shadows, saturation, corrupted pixels) and also maintains the relationship between all the spectral wavelengths in the spectra observed through time. Not all the sentinel-2 bands have been processed - we have excluded atmospheric bands including 1, 9 and 10. The remaining bands have been re-number 1-10 and these bands correlate to the original bands in brackets below: 1 = blue (2) , 2 = green (3) , 3 = red (4), 4 = vegetation red edge (5), 5 = vegetation red edge (6), 6= vegetation red edge (7), 7 = NIR(8), 8 = Narrow NIR (8a), 9 = SWIR1 (11) and 10 = SWIR2(12). All 10 bands have been resampled to 10 meters to facilitate band integration and use in machine learning.
-
<b>This record was retired 29/03/2022 with approval from S.Oliver as it has been superseded by eCat 132317 GA Landsat 8 OLI/TIRS Analysis Ready Data Collection 3</b> The PQ25 product facilitates interpretation and processing of Surface Reflectance (SR-N/NT), Fractional Cover 25 (FC25) and all derivative products. PQ25 is an assessment of each image pixel to determine if it is an unobscured, unsaturated observation of the Earth's surface and also whether the pixel is represented in each spectral band. The PQ product allows users to produce masks which can be used to exclude pixels which don't meet their quality criteria from analysis . The capacity to automatically exclude such pixels is essential for emerging multi-temporal analysis techniques that make use of every quality assured pixel within a time series of observations. Users can choose to process only land pixels, or only sea pixels depending on their analytical requirements, leading to enhanced computationally efficient.
-
1. Band ratio: B7/B8 Blue-cyan is magnesite-dolomite, amphibole, chlorite Red is calcite, epidote, amphibole useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives. useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives. useful for mapping: (1) exposed parent material persisting through "cover"; (2) "dolomitization" alteration in carbonates - combine with Ferrous iron in MgOH product to help separate dolomite versus ankerite; (3) lithology-cutting hydrothermal (e.g. propyllitic) alteration - combine with FeOH content product and ferrous iron in Mg-OH to isolate chlorite from actinolite versus talc versus epidote; and (4) layering within mafic/ultramafic intrusives.
-
Remotely sensed datasets provide fundamental information for understanding the chemical, physical and temporal dynamics of the atmosphere, lithosphere, biosphere and hydrosphere. Satellite remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface, including vegetation, rock, soil and landforms, across global to local-district scales. With the exception of hyper-arid regions, mapping rock and soil from space has been problematic because of vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features), making them difficult to resolve. As part of the Exploring for the Future program, a new barest earth Landsat mosaic of the Australian continent using time-series analysis significantly reduces the influence of vegetation and enhances mapping of soil and exposed rock from space. Here, we provide a brief background on geological remote sensing and describe a suite of enhanced images using the barest earth Landsat mosaic for mapping surface mineralogy and geochemistry. These geological enhanced images provide improved inputs for predictive modelling of soil and rock properties over the Australian continent. In one case study, use of these products instead of existing Landsat TM band data to model chromium and sodium distribution using a random forest machine learning algorithm improved model performance by 28–46%. <b>Citation:</b> Wilford, J. and Roberts, D., 2020. Enhanced barest earth Landsat imagery for soil and lithological modelling. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.