From 1 - 4 / 4
  • <p>Geoscience Australia's Oracle organic geochemical database comprises analytical results for samples relevant to petroleum exploration, including source rocks, crude oils and natural gases collected across the Australian continent. The data comprises organic chemical analyses of hydrocarbon-bearing earth materials as well as including connectivity to some inorganic analyses. These data enable petroleum fluids to be typed into families and correlated to their source rock, from which depositional environment, age, and migration distances can be determined, and hence the extent of the total petroleum system can be mapped. This comprehensive data set is useful to government for evidence-based decision making on natural resources and the petroleum industry for de-risking conventional and unconventional petroleum exploration programs. <p>The data are produced by a wide range of analytical techniques. For example, source rocks are evaluated for their bulk compositional characteristics by programmed pyrolysis, pyrolysis-gas chromatography and organic petrology. Natural gases are analysed for their molecular and isotopic content by gas chromatography (GC) and gas chromatography-temperature conversion-mass spectrometry (GC-TC-IRMS). Crude oils and the extracts of source rocks are analysed for their bulk properties (API gravity; elemental analysis) and their molecular (biomarkers) and isotopic (carbon and hydrogen) content by GC, gas chromatography-mass spectrometry (GCMS) and GC-TC-IRMS. <p>The sample data originate from physical samples, well completion reports, and destructive analysis reports provided by the petroleum industry under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGGSA) 2006 and previous Petroleum (submerged Lands) Act (PSLA) 1967. The sample data are also sourced from geological sampling programs in Australia by Geoscience Australia and its predecessor organisation's Australian Geological Survey Organisation (AGSO) and Bureau of Mineral Resources (BMR), and from the state and territory geological organisations. Geoscience Australia generates data from its own laboratories. Other open file data from publications, university theses and books are also included <b>Value:</b> The organic geochemistry database enables digital discoverability and accessibility to key petroleum geochemical datasets. It delivers open file, raw petroleum-related analytical results to web map services and web feature services in Geoscience Australia’s portal. Derived datasets and value-add products are created based on calculated values and geological interpretations to provide information on the subsurface petroleum prospectivity of the Australian continent. For example, the ‘Oils of Australia’ series and the ‘characterisation of natural gas’ reports document the location, source and maturity of Australia’s petroleum resources. Details of the total petroleum systems of selected basins studied under the Exploring for the Future project can be found in the Petroleum Systems Summaries Tool in Geoscience Australia’s portal. Related Geoscience Australia Records and published papers can be obtained from eCat. <b>Scope:</b> The collection initially comprised organic geochemical and petrological data on organic-rich sedimentary rocks, crude oils and natural gas from petroleum wells drilled in the onshore and offshore Australian continent. Over time, other sample types (ground water, fluid inclusions, mineral veins, bitumen) from other borehole types (minerals, stratigraphic – including the Integrated Ocean Drilling Program), marine dredge samples and field sites (outcrop, mines, surface seepage samples) have been analysed for their hydrocarbon content and are captured in the database. Results for many of the oil and gas samples held in the Australian National Offshore Wells Data Collection are included in this database.

  • <b>Organic Geochemistry (ORGCHEM) Schema. Australian Source Rock and Fluid Atlas</b> The databases tables held within Geoscience Australia's Oracle Organic Geochemistry (ORGCHEM) Schema, together with other supporting Oracle databases (e.g., Borehole database (BOREHOLE), Australian Stratigraphic Units Database (ASUD), and the Reservoir, Facies and Shows (RESFACS) database), underpin the Australian Source Rock and Fluid Atlas web services and publications. These products provide information in an Australia-wide geological context on organic geochemistry, organic petrology and stable isotope data related primarily to sedimentary rocks and energy (petroleum and hydrogen) sample-based datasets used for the discovery and evaluation of sediment-hosted resources. The sample data provide the spatial distribution of source rocks and their derived petroleum fluids (natural gas and crude oil) taken from boreholes and field sites in onshore and offshore Australian provinces. Sample depth, stratigraphy, analytical methods, and other relevant metadata are also supplied with the analytical results. Sedimentary rocks that contain organic matter are referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. The data in the ORGCHEM schema are produced by a wide range of destructive analytical techniques conducted on samples submitted by industry under legislative requirements, as well as on samples collected by research projects undertaken by Geoscience Australia, state and territory geological organisations and scientific institutions including the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and universities. Data entered into the database tables are commonly sourced from both the basic and interpretive volumes of well completion reports (WCR) provided by the petroleum well operator to either the state and territory governments or, for offshore wells, to the Commonwealth Government under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGGSA) 2006 and previous Petroleum (submerged Lands) Act (PSLA) 1967. Data are also sourced from analyses conducted by Geoscience Australia’s laboratory and its predecessor organisations, the Australian Geological Survey Organisation (AGSO) and the Bureau of Mineral Resources (BMR). Other open file data from company announcements and reports, scientific publications and university theses are captured. The ORGCHEM database was created in 1990 by the BMR in response to industry requests for organic geochemistry data, featuring pyrolysis, vitrinite reflectance and carbon isotopic data (Boreham, 1990). Funding from the Australian Petroleum Cooperative Research Centre (1991–2003) enabled the organic geochemical data to be made publicly available at no cost via the petroleum wells web page from 2002 and included BOREHOLE, ORGCHEM and the Reservoir, Facies and Shows (RESFACS) databases. Investment by the Australian Government in Geoscience Australia’s Exploring for the Future (EFTF) program facilitated technological upgrades and established the current web services (Edwards et al., 2020). The extensive scope of the ORGCHEM schema has led to the development of numerous database tables and web services tailored to visualise the various datasets related to sedimentary rocks, in particular source rocks, crude oils and natural gases within the petroleum systems framework. These web services offer pathways to access the wealth of information contained within the ORGCHEM schema. Web services that facilitate the characterisation of source rocks (and kerogen) comprise data generated from programmed pyrolysis (e.g., Hawk, Rock-Eval, Source Rock Analyser), pyrolysis-gas chromatography (Py-GC) and kinetics analyses, and organic petrological studies (e.g., quantitation of maceral groups and organoclasts, vitrinite reflectance measurements) using reflected light microscopy. Collectively, these data are used to establish the occurrence of source rocks and the post-burial thermal history of sedimentary basins to evaluate the potential for hydrocarbon generation. Other web services provide data to characterise source rock extracts (i.e., solvent extracted organic matter), fluid inclusions and petroleum (e.g., natural gas, crude oil, bitumen) through the reporting of their bulk properties (e.g., API gravity, elemental composition) and molecular composition using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Also reported are the stable isotope ratios of carbon, hydrogen, nitrogen, oxygen and sulfur using gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and noble gas isotope abundances using ultimate high-resolution variable multicollection mass spectrometry. The stable isotopes of carbon, oxygen and strontium are also reported for sedimentary rocks containing carbonate either within the mineral matrix or in cements. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids, which comprise two key elements of petroleum systems analysis. Understanding a fluid’s physical properties and molecular composition are prerequisites for field development. The composition of petroleum determines its economic value and hence why the concentration of hydrocarbons (methane, wet gases, light and heavy oil) and hydrogen, helium and argon are important relative to those of nitrogen, carbon dioxide and hydrogen sulfide for gases, and heterocyclic compounds (nitrogen, oxygen or sulfur) found in the asphaltene, resin and polar fractions of crude oils. The web services and tools in the Geoscience Australia Data Discovery Portal (https://portal.ga.gov.au/), and specifically in the Source Rock and Fluid Atlas Persona (https://portal.ga.gov.au/persona/sra), allow the users to search, filter and select data based on various criteria, such as basin, formation, sample type, analysis type, and specific geochemical parameters. The web map services (WMS) and web feature services (WFS) enable the user to download data in a variety of formats (csv, Json, kml and shape file). The Source Rock and Fluid Atlas supports national resource assessments. The focus of the atlas is on the exploration and development of energy resources (i.e., petroleum and hydrogen) and the evaluation of resource commodities (i.e., helium and graphite). Some data held in the ORGCHEM tables are used for enhanced oil recovery and carbon capture, storage and utilisation projects. The objective of the atlas is to empower people to deliver Earth science excellence through data and digital capability. It benefits users who are interested in the exploration and development of Australia's energy resources by: • Providing a comprehensive and reliable source of information on the organic geochemistry of Australian source rocks • Enhancing the understanding of the spatial distribution, quality, and maturity of petroleum source rocks. • Facilitating the mapping of total petroleum and hydrogen systems and the assessment of the petroleum and hydrogen resource potential and prospectivity of Australian basins. • Facilitating the mapping of gases (e.g., methane, helium, carbon dioxide) within the geosphere as part of the transition to clean energy. • Enabling the integration and comparison of data from diverse sources and various acquisition methods, such as geological, geochemical, geophysical and geospatial data. • Providing data for integration into enhanced oil recovery and carbon capture, storage and utilisation projects. • Improving the accessibility and usability of data through user-friendly and interactive web-based interfaces. • Promoting the dissemination and sharing of data among Government, industry and community stakeholders. <b>References</b> Australian Petroleum Cooperative Research Centre (APCRC) 1991-2003. Australian Petroleum CRC (1991 - 2003), viewed 6 May 2024, https://www.eoas.info/bib/ASBS00862.htm and https://www.eoas.info/biogs/A001918b.htm#pub-resources Boreham, C. 1990. ORGCHEM Organic geochemical database. BMR Research Newsletter 13. Record 13:10-10. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/90326 Edwards, D.S., MacFarlane, S., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S.E., Ray, J., Raymond, O. 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/133751. <b>Citation</b> Edwards, D., Buckler, T. 2024. Organic Geochemistry (ORGCHEM) Schema. Australian Source Rock and Fluid Atlas. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/149422

  • Geoscience Australia's Australian National Hydrocarbon Geochemistry Data Collection comprises Oracle database tables from the Organic Geochemistry (ORGCHEM) schema and derivative information in the Petroleum Systems Summary database (Edwards et al., 2020, 2023; Edwards and Buckler, 2024). The ORGCHEM schema includes organic geochemistry, organic petrology and stable isotope database tables that capture the analytical results from sample-based datasets used for the discovery and evaluation of sediment-hosted resources. A focus is to capture open file data relevant to energy (i.e., petroleum and hydrogen) exploration, including source rocks, crude oils and natural gases from both onshore and offshore Australian sedimentary basins. The database tables also include complementary physical properties and complementary inorganic analyses on sedimentary rocks and hydrocarbon-based earth materials. The data are produced by a wide range of destructive analytical techniques conducted on samples submitted by industry under legislative requirements, as well as on samples collected by research projects undertaken by Geoscience Australia, other government agencies and scientific institutions. Some of these results have been generated by Geoscience Australia, whereas other data are compiled from service company reports, well completions reports, government reports, published papers and theses. The data is non-confidential and available for use by Government, the energy exploration industry, research organisations and the community. The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information, including the statistical evaluation of the analytical data by basin across the Australian continent. <b>Value: </b>These data in the ORGCHEM database tables comprise the raw organic geochemistry, organic petrological and stable isotopic values generated for Australian source rocks, crude oils and natural gases and is the only public comprehensive database at the national scale. The raw data are used as input values to other studies, such as basin analysis, petroleum systems evaluation and modelling, resource assessments, enhanced oil recovery projects, and national mapping projects. Derived datasets and value-add products are created based on calculated values and interpretations to provide information on the subsurface petroleum prospectivity of the Australian continent, as summarised in the Petroleum Systems Summary database. The data collection aspires to build a national scale understanding of Australia's petroleum and hydrogen resources. This data collection is useful to government for evidence-based decision making on sediment-hosted energy resources and the energy industry for de-risking both conventional and unconventional hydrocarbon exploration programs, hydrogen exploration programs, and carbon capture, utilisation and storage programs. <b>Scope: </b>The database initially comprised organic geochemical and organic petrological data on organic-rich sedimentary rocks, crude oils and natural gas samples sourced from petroleum wells drilled in the onshore and offshore Australian continent, including those held in the Australian National Offshore Wells Data Collection. Over time, other sample types (e.g., fluid inclusions, mineral veins, bitumen) from other borehole types (e.g., minerals, stratigraphic including the Integrated Ocean Drilling Program, and coal seam gas), marine dredge samples and field sites (outcrop, mines, surface seepage samples, coastal bitumen strandings) have been analysed for their molecular and stable isotopic chemical compositions and are captured in the databases. The organic geochemical database tables and derivative data compiled in the Petroleum Systems Summary database are delivered by web services and analytical tools in the <a href="https://portal.ga.gov.au/">Geoscience Australia Data Discovery Portal </a> and specifically in the <a href="https://portal.ga.gov.au/persona/sra">Source Rock and Fluid Atlas Persona</a>. These web services enable interrogation of source rock and petroleum fluids data within boreholes and from field sites and facilitate correlation of these elements of the petroleum system within and between basins. <b>Reference</b> Edwards, D.S., Buckler, T., Grosjean, E. & Boreham, C.J. 2024. Organic Geochemistry (ORGCHEM) Database. Australian Source Rock and Fluid Atlas. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/149422 Edwards, D., Hawkins, S., Buckler, T., Cherukoori, R., MacFarlane, S., Grosjean, E., Sedgmen, A., Turk, R. 2023. Petroleum Systems Summary database. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/148979 Edwards, D.S., MacFarlane, S., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S.E., Ray, J., Raymond, O. 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/133751.

  • In response to numerous enquiries by petroleum exploration personnel on the availability of geochemical information, a new data base – ORGCHEM – has been created. This new database is based on the relational database management system ORACLE. ORGCHEM integrates non-BMR and BMR-generated geochemical data. Within ORGCHEM the locality data includes basin, well, formation, and depth, while the geochemical data information covers Rock-Eval, organic carbon content, and vitrinite reflectance values. This is basic data relevant to organic maturation levels, source richness, and source type, and is of primary importance to petroleum exploration personnel involved in assessing the petroleum prospectiveness of an area or modelling petroleum generation. The bulk of the non-BMR-generated information is derived from well-completion reports acquired by BMR through past and present Government regulatory Acts, PSSA, and PSLA (pre-1980 offshore wells only). From these sources over 12,000 records have been compiled. The Organic Geochemistry Facility within the Onshore Sedimentary and Petroleum Geology Program has undertaken the task of extracting the remaining geochemical data from post-1980 PSLA-acquired well-completion reports. ORGCHEM also contains all organic geochemical and isotopic information produced within the BMR since 1982. The principle source of this information is from organic geochemical investigations undertaken within the Organic Geochemistry Facility. Already ORGCHEM contains over 4000 records of ‘in-house’ generated data. Concurrently with this data accumulation phase, links with PEDIN (Petroleum Data Exploration Index) are being developed to enable interested persons to perform user-pay customised retrieval of open-file geochemical data for specific, basinal, or regional studies. Published in the BMR Research Newsletter 13.