From 1 - 10 / 1740
  • The combination of space geodetic techniques nowadays relies on the provision of accurate tie vectors locally measured on ground at geodetic co-location sites. Co-location of space geodetic sensors on-board of orbiting spacecraft (i.e. space co-locations) is an appealing solution to mitigate the shortcomings of terrestrial local ties, but their implementation in routine data processing is yet to be realised, and for now ground co-locations represent the only practical solution. Tie vectors directly enter and affect the computation of the global terrestrial reference frame, and as a consequence must be provided with an utmost level of accuracy. In addition, accurate tie vectors can be used to identify the presence of specific systematic errors affecting space geodetic techniques. In this presentation, we review the state-of-the-art in tie vector estimation and identify the factors that can degrade their accuracy as well as spotlighting common shortcomings present in the estimation process. Some of the issues we will discuss apply equally to co-locations of sensors in space and pertain to the level of accuracy currently achievable with the combination of space geodetic observations within GGOS.

  • GNSS is the most effective way to achieve a robust and globally consistent regional reference system. Recognising the importance of improving the regional geodetic framework in the Asia-Pacific region, the Asia-Pacific Reference Frame (APREF) project call for participation was released in March 2010. The APREF project is a joint initiative of the Permanent Committee for GIS Infrastructure of the Asia-Pacific (PCGIAP) and the International Association of Geodesy (IAG). Currently, GNSS data from a Continuously Operating Reference Station (CORS) network of approximately 400 stations, contributed by 28 countries, is available and processed by three Local Analysis Centres (LACs). The contributions of the LACs are combined into a weekly solution in SINEX format using the CATREF software. The products of the APREF project are coordinates and velocities of the APREF GNSS network stations in the recent realisation of the International Terrestrial Reference Frame (ITRF), and time series of the coordinates of the APREF CORS. Three kinds of APREF products are available, rapid daily solutions which are produced using IGS rapid products, final daily solutions which are produced using IGS final products, and the weekly combined solutions. The core product of the APREF is the weekly solution; it provides a reliable time-series of the regional reference frame in the ITRF and a quality assessment of the performance of participating Asia-Pacific GNSS CORS. In this paper, two case studies of the applications of the APREF project are presented: the detection of coseismic displacement and monitoring the stability of CORS.

  • An increasingly important requirement for Australia's geodetic reference system is that the relationships between the International Terrestrial Reference Frame (ITRF) and the national horizontal and vertical datums are well understood. To support the development of improved geodetic infrastructure in Australia, we have analysed GPS data observed at 2310 survey marks. These data, observed between 1995 and 2009, across continental Australia were processed with consistent standards to generate a combined solution with an estimated uncertainty of better than 5 and 20 mm (1 sigma) in the horizontal and vertical components, respectively. Our combined solution, which was mapped to ITRF2005 at the reference epoch of 2000, is the first unified single-epoch solution with sufficient resolution to support datum modernisation in Australia. We review the considerable work undertaken to determine the optimum analysis procedure, including comparisons of solutions using different antenna phase centre variations (PCV) calibration models, and find that the heights determined using relative PCV models differ from those determined using absolute PCV models by a maximum of 27 mm and an average of 6 mm. Also, we assess the impact of both observation session lengths and crustal velocity modelling. There will be two important applications for this new GPS solution. First, will be the development of an improved model for the estimation of Australian Height Datum (AHD) values from GNSS observations, and the solution will be an important input into the Australian Height Modernisation Project. Second, will be its use as constraining dataset for the readjustment of the terrestrial geodetic observations used in GDA94 as part of the creation of the Geodetic Model of Australia, and will potentially lead to a new national datum.

  • The purpose of this paper is to investigate and quantify the near-field and far-field contamination effects from GRACE data to assess whether or not they influence the accuracy with which hydrological signals in the Murray-Darling Basin, southeast Australia can be estimated. Far-field contamination was assessed by modelling some of the world's largest geophysical processes which generate major gravitational signals (e.g. melting of the Greenland icesheet, hydrology in the Amazon Basin) while near-field contamination was modelled by simulating gravitational variability of the Australian continent. Contamination was measured by simulating each of the processes and measuring the proportion of the simulated signal detected in the Murray - Darling Basin. The sum of the cumulative near-field and far-field effects revealed a maximum of ~10 mm (equivalent water height) of spurious signal within the Murray - Darling Basin. This equates to only one quarter of the formal uncertainty of the basin-scale estimates of changes in total water storage. Thus, GRACE products can be used to monitor broad scale hydrologic trends and variability in the Murray-Darling Basin without the need to account for contamination of the estimates from external geophysical sources.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.