From 1 - 10 / 130
  • Regional geological properties of sedimentary basins play a significant role in determining the safety of CO2 storage. Four major trapping mechanism have been identified: Structural and stratigraphic trapping is the containment of supercritical CO2 by low permeability / low porosity rocks and is the dominant mechanism during injection and initial storage phase. Residual or capillary trapping is the retention of supercritical CO2 in the pore space between grains and tends to be most relevant on a scale of tens to thousands of years. Solubility trapping is the uptake of CO2 into the formation water, which is considered to be the most important trapping mechanism over hundreds to millions of years (1). Mineral trapping leads to the permanent immobilization of carbon through the precipitation of carbonate minerals. This study assesses the conditions for solubility trapping in major Australian sedimentary basins. The total dissolved solid (TDS) concentration of the formation water has been compiled from over 900 wells as it, along with pressure and temperature, is a key variable controlling CO2 solubility and the associated change in fluid density. Fluid density is a critical factor in driving fluid advection which determines the rate of solubility trapping and downward migration in the formation. This process is vital in reducing the amount of highly mobile supercritical CO2 at the top of the formation and storing it as dissolved CO2 in deeper parts of the formation.

  • Geological storage of CO<sub>2</sub> requires fundamental knowledge and predictive capabilities on the transport and reactions of injected CO<sub>2</sub> and associated gases to assess the short and long term consequences. CO<sub>2</sub> can be stored in the subsurface through various mechanisms including structural trapping, solubility trapping and by precipitation of carbonate minerals. While mineral strapping is considered to be the safest storage mechanism as it permanently immobilizes the CO<sub>2</sub>, the reaction rates and the likely importance for geosequestration is poorly understood. This project has five objectives, which aim to make CO<sub>2</sub> storage more predictable and safer. A range of approaches will be used including desk top studies, laboratory and field experiments and geochemical modelling.

  • This project aims to address the question: Under what geological circumstances are faults (and fractures) in mudstone seal rocks likely to impact on bulk permeability and the flow of CO<sub>2</sub> through these rocks and are there other geomechanical processes that might result in loss of containment?

  • Groundwater has been sampled from 21 shallow (Port Campbell Limestone) and 3 deep (Dilwyn Formation) groundwater bores within a radius of 10 km around well CRC-1 between June 2006 and March 2008. The objectives of the study are (1) to establish baseline aquifer conditions prior to CO2 injection at CRC-1, which started in April 2008, and (2) to enable detection monitoring for CO2 leakage, should any occur in the future. In addition to sampling, standing water levels have been monitored continuously in 6 of the bores using barometric loggers. The water samples were analysed for pH, electrical conductivity (EC), temperature (T), dissolved oxygen (DO), redox potential (Eh), reduced iron (Fe2+) and alkalinity (dissolved inorganic carbon, DIC, as HCO3-) in the field, and for a suite of major, minor and trace inorganic species in the laboratory. Stable isotopes of O and H in water, of S in sulfate and of C and O in DIC were also determined. The shallow groundwaters have compositions typical of carbonate aquifer hosted waters, being fresh (EC 800-4000 uS/cm), dominated by Ca, Na, HCO3- and Cl-, cool (T 12-23°C), and near-neutral (pH 6.6-7.5). Most deep groundwater samples are similarly fresh or fresher (EC 400-1600 uS/cm), also dominated by Ca, Na, HCO3- and Cl-, cool (T 15-21°C), but are more alkaline (pH 7.5-9.5). Time-series reveal that parameters measured have been relatively stable over the sampling period, although some shallow bores display increasing EC and T, some show decreasing then increasing alkalinity while others show steadily increasing alkalinity (with or without increasing Cl- and Na, and decreasing Ca). Alkalinity of the deep groundwater tends to decrease slightly over the period. Groundwater levels in some of the shallow bores show a seasonal variation with longer term trends evident in both aquifers.

  • In the 2011/12 Budget, the Australian Government announced funding of a four year National CO2 Infrastructure Plan (NCIP) to accelerate the identification and development of suitable long term CO2 storage sites, within reasonable distances of major energy and industrial emission sources. The NCIP funding follows on from funding announced earlier in 2011 from the Carbon Storage Taskforce through the National Carbon Mapping and Infrastructure Plan and previous funding recommended by the former National Low Emissions Coal Council. Four offshore sedimentary basins and several onshore basins have been identified for study and pre-competitive data acquisition.

  • Phase two of the China Australia Geological Storage of CO2 (CAGS2) project aimed to build on the success of the previous CAGS project and promote capacity building, training opportunities and share expertise on the geological storage of CO2. The project was led by Geoscience Australia (GA) and China's Ministry of Science and Technology (MOST) through the Administrative Centre for China's Agenda 21 (ACCA21). CAGS2 has successfully completed all planned activities including three workshops, two carbon capture and storage (CCS) training schools, five research projects focusing on different aspects of the geological storage of CO2, and ten researcher exchanges to China and Australia. The project received favourable feedback from project partners and participants in CAGS activities and there is a strong desire from the Chinese government and Chinese researchers to continue the collaboration. The project can be considered a highly successful demonstration of bi-lateral cooperation between the Australian and Chinese governments. Through the technical workshops, training schools, exchange programs, and research projects, CAGS2 has facilitated and supported on-going collaboration between many research institutions and industry in Australia and China. More than 150 experts, young researchers and college students, from over 30 organisations, participated in CAGS2. The opportunity to interact with Australian and international experts at CAGS hosted workshops and schools was appreciated by the participants, many of whom do not get the opportunity to attend international conferences. Feedback from a CAGS impact survey found that the workshops and schools inspired many researchers and students to pursue geological storage research. The scientific exchanges proved effective and often fostered further engagement between Chinese and Australian researchers and their host organisations. The research projects often acted as a catalyst for attracting additional CCS funding (at least A$700,000), including two projects funded under the China Clean Development Mechanism Fund. CAGS sponsored research led to reports, international conference presentations, and Chinese and international journal papers. CAGS has established a network of key CCS/CCUS (carbon capture, utilisation and storage) researchers in China and Australia. This is exemplified by the fact that 4 of the 6 experts that provided input on the 'storage section' of the 12th Five-Year plan for Scientific and Technological Development of Carbon Capture, Utilization and Storage, which laid out the technical policy priorities for R&D and demonstration of CCUS technology in China, were CAGS affiliated researchers. The contributions of CAGS to China's capacity building and policy CCUS has been acknowledged by the Chinese Government. CAGS support of young Chinese researchers is particularly noted and well regarded. Letters have been sent to the Secretary of the Department of Industry and Science and to the Deputy CEO of Geoscience Australia, expressing China's gratitude for the Australian Government's support and GA's cooperation in the CAGS project.

  • This GHGT-12 conference paper hightlights some results of GA's work on "Regional assessment of the CO2 storage potential of the Mesozoic sucession in the Petrel Sub-basin, Northern Territory, Australia. Record 2014/11".

  • Questions often asked by the public in regard to the concept of CO2 storage include; "But won?t it leak?", and "How long will it stay down there?". The natural environment of petroleum systems documents many of the processes which will influence CO2 storage outcomes, and the likely long (geological) timeframes that will operate. Thousand of billions of barrels of hydrocarbons have been trapped and stored in geological formations in sedimentary basins for 10s to 100s of millions of years, as has substantial volumes of CO2 that has been generated through natural processes. Examples from Australia and major hydrocarbon provinces of the world are documented, including those basins with major accumulations that are currently trapped in their primary reservoir, those that have accumulated hydrocarbons in the primary reservoir and then through tectonic activity spilled them to other secondary traps or released the hydrocarbons to the atmosphere, and those that generated hydrocarbons but for which no effective traps were in place for hydrocarbons to accumulate. Some theoretical modelling of the likelihood of meeting stabilisation targets using geological storage are based on leakage rates which are implausibly high when compared to observations from viable storage locations in the natural environment, and do not necessarily account for the likelihood of delay times for leakage to the atmosphere or the timeframe in which geological events will occur. Without appropriate caveats, they potentially place at risk the public perception of how efficient and effective appropriately selected geological reservoirs could be for storage of CO2. If the same rigorous methods, technology and skills that are used to explore for, find and produce hydrocarbon accumulations are now used for finding safe and secure storage sites for CO2, the traps so identified can be expected to contain the CO2 after injection for similar periods of time as that in which hydrocarbons and CO2 have been stored in the natural environment.

  • Identification of major hydrocarbon provinces from existing world assessments for hydrocarbon potential can be used to identify those sedimentary basins at a global level that will be highly prospective for CO2 storage. Most sedimentary basins which are minor petroleum provinces and many non-petroliferous sedimentary basins will also be prospective for CO2 storage. Accurate storage potential estimates will require that each basin be assessed individually, but many of the prospective basins may have ranges from high to low prospectivity. The degree to which geological storage of CO2 will be implemented in the future will depend on the geographical and technical relationships between emission sites and storage locations, and the economic drivers that affect the implementation for each source to sink match. CO2 storage potential is a naturally occurring resource, and like any other natural resource there will be a need to provide regional access to the better sites if the full potential of the technology is to be realized. Whilst some regions of the world have a paucity of opportunities in their immediate geographic confines, others are well endowed. Some areas whilst having good storage potential in their local region may be challenged by the enormous volume of CO2 emissions that are locally generated. Hubs which centralize the collection and transport of CO2 in a region could encourage the building of longer and larger pipelines to larger and technically more viable storage sites and so reduce costs due to economies of scale.