Sedimentology
Type of resources
Keywords
Publication year
Service types
Topics
-
Here we present the surficial geology map for the Vestfold Hills, East Antarctica. On the coast of Prydz Bay, the region is one of the largest ice-free areas in Antarctica. Surficial geology mapping at 1:2000 was undertaken with field observations in the 2018/19 and 2019/20 summer seasons as well as aerial photography and satellite imagery interpretation. Units are based on the Geological Survey of Canada Surficial Data Model Version 2.4.0 (Deblonde et al 2019).
-
This web service contains sediment and geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012, on RV Solander (survey GA0339/SOL5650).
-
Would you like to make your own rock? In this set of activities you can simulate the natural processes that form sedimentary rocks in just a few hours, instead of taking millions and millions of years. All the activities can be undertaken using readily available materials. Supervision recommended.
-
Preamble -- The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (doi: 10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Plutonium Isotopes Dataset. Abstract -- Seventy three fine-fraction (<75 um) Top Outlet Sediment (TOS, 0 – 10 cm depth) NGSA samples from Queensland were analysed for the plutonium (Pu) isotopes 238Pu and 239+240Pu (unresolved 239Pu and 240Pu) to determine: (1) if Pu is detectable in the Australian environment; and (2) what the levels and ranges of Pu retention in selected Queensland catchment soils are. Radiochemical analyses were performed by alpha spectrometry at the radioanalytical laboratories of Radiation and Nuclear Sciences, Department of Health, Queensland, and at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Victoria. The method yielded a 239+240Pu trace-level detection limit of 0.04 mBq/g (equivalent to 10.4 fg/kg or 0.0056 net counts per minute) with a relative standard deviation (RSD) of 15.1%. The average tracer recovery was 69% (RSD 25%) over a 3-day count. Total analytical uncertainty ranged from 19% to 90% at close to detection limits. Field duplicate repeatability for 239+240Pu activity concentration ranged from 18% to 45%, which in part at least reflects the inherent heterogeneity of soil/sediments containing refractory particles exhibiting variation in Pu activity concentrations. Analytical duplicate repeatability for 239+240Pu activity concentration ranged from 10% to 23%, with the mean activity concentration and error of the replicates reported with propagation of errors. The results show a wide range of 239+240Pu activity concentration in the fine TOS NGSA samples across Queensland (N = 73): 239+240Pu: Min = <0.04 mBq/g; Med ± MAD (median absolute deviation) = 0.09 ± 0.07 mBq/g; Mean ± SD = 0.29 ± 0.72 mBq/g; 95th percentile = 1.53 mBq/g; Max = 4.88 mBq/g. In comparison the world average background is estimated at 0.2 mBq/g. Analytical results for 39% of samples were below detection. Six samples with 239+240Pu > 0.18 mBq/g (70th percentile) were also analysed for 238Pu by the same alpha spectrometry method. Results ranged from 0.04 to 0.1 mBq/g (N = 6). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (https://pid.geoscience.gov.au/dataset/ga/144101).
-
This Karumba Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Karumba Basin is a shallow geological basin in Queensland, Australia, composed of sedimentary rocks and unconsolidated sediments that cover the Mesozoic Carpentaria Basin. Deposition started during the Late Cretaceous to Early Paleocene and has continued into the Holocene. The basin extends from western Cape York Peninsula into the Gulf of Carpentaria, where it connects with Cenozoic sediment deposits in Papua New Guinea. Although the sediments in both areas share lithostratigraphic and biostratigraphic similarities, their tectonic histories differ. The basin's structural geology is relatively uniform, with a significant downwarp known as the Gilbert-Mitchell Trough in Cape York Peninsula and another depocenter offshore in the Gulf of Carpentaria. The depositional history and stratigraphy of the Karumba Basin can be divided into three cycles of deposition, erosion, weathering, and the formation of stratigraphic units. The earliest cycle (the Bulimba Cycle) began in the Late Cretaceous to Early Paleocene, with episodes of significant uplift along the eastern margins of the basin. This resulted in the deposition of the Bulimba Formation and the Weipa Beds, primarily consisting of claystone, sandstone, conglomerate, and siltstone with minor coal layers. This cycle was followed by a period of planation and deep weathering, creating the Aurukun Surface. The second cycle (the Wyaaba Cycle) was initiated by large-scale earth movements along the Great Dividing Ranges, forming much of the eastern boundary of the Karumba Basin, and leading to the formation of the Wyaaba beds and other equivalent units. These beds consist mainly of fluvial to paralic clay-rich sandstone, conglomerate, siltstone, and claystone. In the south-west, Oligocene to Pliocene limestone deposits also formed in lacustrine settings, and were sourced from and deposited upon the underlying Georgina Basin. The cycle ended with ensuing periods of erosion and weathering and the development of the Pliocene Kendall Surface, as well as widespread basaltic volcanism. The final cycle (the Claraville Cycle) started in the Pliocene and continues to the present. It has experienced several episodes of uplift and deposition controlled by sea level change, climate variability and volcanism in the south. The Claraville beds are unconsolidated sediments, chiefly comprised of clayey quartzose sand and mud with minor gravels, reaching approximately 148 m thickness offshore, and approximately 70 m onshore. As this cycle is still ongoing, no terminal surface has been formed, and most units consist of unconsolidated surficial sediments.
-
This Eucla Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Eucla Basin, located along Australia's southern margin, covers an extensive area of approximately 1,150,000 square kilometres, housing the world's largest grouping of onshore Cenozoic marine sediments. It stretches over 2000 km from east to west and has four main subdivisions: Scaddan Embayment, Esperance Shelf, Nullarbor Shelf, and Yalata Sub-basin offshore. The basin extends about 350 km inland from the modern southern Australian coastline and terminates around 200 km offshore where it meets sediments of the Australian-Antarctic Basin. The sedimentary succession is largely consistent throughout the entire basin. In the west, it overlaps with the Yilgarn Craton and Albany-Fraser Orogen, while in the east, the Gawler Craton and Officer Basin separate it from the Musgrave Province. The basin contains mainly Cenozoic sediments, with thicker sequences in the east due to sediment movement and regional elevation differences. The onshore Eucla Basin hosts an unfaulted sheet of sediment deposited over a south-sloping shelf during several marine transgressions. The basal units rest on a prominent unconformity above the Bight Basin, indicating a break in deposition during the separation of Australia and Antarctica. The sedimentary sequence comprises various units such as the Hampton Sandstone, Pidinga Formation, and Werillup Formation, followed by the Wilson Bluff Limestone, Abrakurrie Limestone, Nullarbor Limestone, and Roe Calcarenite. The basin's geological history is marked by significant events such as marine transgressions during the Eocene, leading to the deposition of extensive limestone formations. The Miocene saw slight tilting of the basin, exposing the Nullarbor Plain to the atmosphere and limiting further sediment deposition. During the late Miocene to Pliocene, barrier and lagoonal transgressions contributed to the formation of the Roe Calcarenite. The Pliocene period witnessed intense karstification and the development of ferricrete and silcrete, resulting in the unique modern-day topography of the region.
-
<div>This document provides metadata for the gross depositional environment (GDE) interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. </div><div>The AFER projects is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. </div><div>The GDE data sets provide high level classifications of interpreted environments where sediments were deposited within each defined play interval in the Pedirka, Simpson and Western Eromanga basins. Twelve gross depositional environments have been interpreted and mapped in the study (Table 1). A total of 14 play intervals have been defined for the Pedirka, Simpson and Western Eromanga basins by Bradshaw et al. (2022, in press), which represent the main chronostratigraphic units separated by unconformities or flooding surfaces generated during major tectonic or global sea level events (Figure 1). These play intervals define regionally significant reservoirs for hydrocarbon accumulations or CO2 geological storage intervals, and often also include an associated intraformational or regional seal. </div><div>GDE interpretations are a key data set for play-based resources assessments in helping to constrain reservoir presence. The GDE maps also provide zero edges showing the interpreted maximum extent of each play interval, which is essential information for play-based resource assessments, and for constructing accurate depth and thickness grids. </div><div>GDE interpretations for the AFER Project are based on integrated interpretations of well log and seismic data, together with any supporting palynological data. Some play intervals also have surface exposures within the study area which can provide additional published paleo-environmental data. The Pedirka, Simpson and Western Eromanga basins are underexplored and contain a relatively sparse interpreted data set of 42 wells and 233 seismic lines (Figure 2). Well and outcrop data provide the primary controls on paleo-environment interpretations, while seismic interpretations constrain the interpreted zero edges for each play interval. The sparse nature of seismic and well data in the study area means there is some uncertainty in the extents of the mapped GDE’s. </div><div>The data package includes the following datasets: </div><div>Play interval tops for each of the 42 wells interpreted – provided as an ‘xlsx’ file. </div><div>A point file (AFER_Wells_GDE) capturing the GDE interpretation for each of the 14 play intervals in each of the 42 wells – provided as both a shapefile and within the AFER_GDE_Maps geodatabase. </div><div>Gross depositional environment maps for each of the 14 play intervals (note that separate GDE maps have been generated for the Namur Sandstone and Murta Formation within the Namur-Murta play interval, and for the Adori Sandstone and Westbourne Formation within the Adori-Westbourne play interval) – provided as both shapefiles and within the AFER_GDE_Maps geodatabase. </div><div> </div><div>These GDE data sets are being used to support the AFER Project’s play-based energy resource assessments in the Western Eromanga, Pedirka and Simpson basins. </div><div><br></div>
-
This Perth Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Perth Basin is a complex geological region extending along Australia's southwest margin for about 1,300 km. It comprises sub-basins, troughs, terraces, and shelves, hosting sedimentary rocks with coal, oil, gas, and significant groundwater resources. Off the coast of Western Australia, it reaches depths of up to 4,500 m, while its onshore part extends up to 90 km inland. The basin is bounded by the Yilgarn Craton to the east, and the Carnarvon and Bremer basins to the north and south. The basin's history involves two main rifting phases in the Permian and Late Jurassic to Early Cretaceous, creating 15 sub-basins with varying sedimentary thickness due to compartmentalization and fault reactivation. The sedimentary succession mainly comprises fluviatile Permian to Early Cretaceous rocks over Archean and Proterozoic basement blocks. Differences exist between northern and southern sequences, with the south being continental and the north featuring marine deposits. During the Permian, faulting and clastic sedimentation dominated, with marine transgressions in the north and continental rocks in the south. The Triassic saw a similar pattern, with the southern succession being continental and the northern succession showing marine deposits. The Kockatea Shale became a primary hydrocarbon source. The Jurassic period witnessed marine incursions in the central basin, while the Late Jurassic experienced sea level regression and deposition of the Yarragadee Formation. The Cretaceous saw the formation of the Early Cretaceous Parmelia Group due to heavy tectonic activity. The southern basin had a marine transgression leading to the Warnbro Group's deposition with valuable groundwater resources. Post-Cretaceous, Cenozoic deposits covered the basin with varying thicknesses. Overall, the Perth Basin's geological history reveals a diverse sedimentary record with economic and resource significance.
-
Preamble: The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (http://dx.doi.org/10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Lead Isotopes Dataset. Abstract: Over 1200 new lead (Pb) isotope analyses were obtained on catchment outlet sediment samples from the NGSA regolith archive to document the range and patterns of Pb isotope ratios in the surface regolith and their relationships to geology and anthropogenic activity. The selected samples included 1204 NGSA Top Outlet Sediment (TOS) samples taken from 0 to 10 cm depth and sieved to <2 mm (or ‘coarse’ fraction); three of these were analysed in duplicate for a total of 1207 Pb isotope analyses. Further, 12 Northern Australia Geochemical Survey (NAGS; http://dx.doi.org/10.11636/Record.2019.002) TOS samples from within a single NGSA catchment, also sieved to <2 mm, were analysed to provide an indication of smaller scale variability. Combined, we thus present 1219 new TOS coarse, internally comparable data points, which underpin new national regolith Pb isoscapes. Additionally, 16 NGSA Bottom Outlet Sediment (BOS; ~60 to 80 cm depth) samples, also sieved to <2 mm, and 16 NGSA TOS samples sieved to a finer grainsize (<75 um, or ‘fine’) fraction from selected NGSA catchments were also included to inform on Pb mobility and residence. Lead isotope analyses were performed by Candan Desem as part of her PhD research at the School of Geography, Earth and Atmospheric Sciences, University of Melbourne. After an initial ammonium acetate (AmAc) leach, the samples were digested in aqua regia (AR). Although a small number of samples were analysed after the AmAc leach, all samples were analysed after the second, AR digestion, preparation step. The analyses were performed without prior matrix removal using a Nu Instruments Attom single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometer (SF-ICP-MS). The dried soil digests were redissolved in 2% HNO3 run solutions containing high-purity thallium (1 ppb Tl) and diluted to provide ~1 ppb Pb in solution. Admixture of natural, Pb-free Tl (with a nominal 205Tl/203Tl of 2.3871) allowed for correction of instrumental mass bias effects. Concentrations of matrix elements in the diluted AR digests are estimated to be in the range of 1–2 ppm. The SF-ICP-MS was operated in wet plasma mode using a Glass Expansion cyclonic spray chamber and glass nebuliser with an uptake rate of 0.33 mL/min. The instrument was tuned for maximum sensitivity and provided ~1 million counts per second/ppb Pb while maintaining flat-topped peaks. Each analysis, performed in the Attom’s ‘deflector peak jump’ mode, consists of 30 sets of 2000 sweeps of masses 202Hg, 203Tl, 204Pb, 205Tl, 206Pb, 207Pb and 208Pb, with dwell times of 500 μs and a total analysis time of 4.5 min. Each sample acquisition was preceded by a blank determination. All corrections for baseline, sample Hg interference (202Hg/204Pb ratios were always <0.043) and mass bias were performed online, producing typical in-run precisions (2 standard errors) of ±0.047 for 206Pb/204Pb, ±0.038 for 207Pb/204Pb, ±0.095 for 208Pb/204Pb, ±0.0012 for 207Pb/206Pb and ±0.0026 for 208Pb/206Pb. A small number of samples with low Pb concentrations exhibited very low signal sizes during analysis resulting in correspondingly high analytical uncertainties. Samples producing within-run uncertainties of >1% relative (measured on the 207Pb/204Pb ratio) were discarded as being insufficiently precise to contribute meaningfully to the dataset. Data quality was monitored using interspersed analyses of Tl-doped ~1 ppb solutions of the National Institute of Standards and Technology (NIST) SRM981 Pb standard, and several silicate reference materials: United States Geological Survey ‘BCR-2’ and ‘AGV-2’, Centre de Recherches Pétrographiques et Géochimiques ‘BR’ and Japan Geological Survey ‘JB-2’. In a typical session, up to 50 unknowns plus 15 standards were analysed using an ESI SC-2 DX autosampler. Although previous studies using the Attom SF-ICP-MS used sample-standard-bracketing techniques to correct for instrumental Pb mass bias, Tl doping was found to produce precise, accurate and reproducible results. Based upon the data for the BCR-2 and AGV-2 secondary reference materials, for which we have the most analyses, deviations from accepted values (accuracy) were typically <0.17%. Data for the remaining silicate standards appear slightly less accurate but these results may, to some extent, reflect uncertainty in the assigned literature values for these materials. Replicate runs of selected AR digests yielded similar reproducibility estimates. The results show a wide range of Pb isotope ratios in the NGSA (and NAGS) TOS <2 mm fraction samples across the continent (N = 1219): 206Pb/204Pb: Min = 15.558; Med ± Robust SD = 18.844 ± 0.454; Mean ± SD = 19.047 ± 1.073; Max = 30.635 207Pb/204Pb; Min = 14.358; Med ± Robust SD = 15.687 ± 0.091; Mean ± SD = 15.720 ± 0.221; Max = 18.012 208Pb/204Pb; Min = 33.558; Med ± Robust SD = 38.989 ± 0.586; Mean ± SD = 39.116 ± 1.094; Max = 48.873 207Pb/206Pb; Min = 0.5880; Med ± Robust SD = 0.8318 ± 0.0155; Mean ± SD = 0.8270 ± 0.0314; Max = 0.9847 208Pb/206Pb; Min = 1.4149; Med ± Robust SD = 2.0665 ± 0.0263; Mean ± SD = 2.0568 ± 0.0675; Max = 2.3002 These data allow the construction of the first continental-scale regolith Pb isotope maps (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb isoscapes) of Australia and can be used to understand contributions of Pb from underlying bedrock (including Pb-rich mineralisation), wind-blown dust and possibly from anthropogenic sources (industrial, transport, agriculture, residential, waste handling). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (http://dx.doi.org/10.26186/5ea8f6fd3de64). Isoscape grids (inverse distance weighting interpolated grids with a power coefficient of 2 prepared in QGis using GDAL gridding tool based on nearest neighbours) are also provided for the five Pb isotope ratios (IDW2NN.TIF files in zipped folder). Alternatively, the new Pb isotope data can be downloaded from and viewed on the GA Portal (https://portal.ga.gov.au/).
-
<div>Geoscience Australia maintains a national collection of marine geological samples and analytical data from across the Australian region. Digital records of these datasets are held within the Marine Sediment Database (MARS), available as an online resource of c. 2.6 million entries. Here we have extracted data from MARS to collate sediment properties for over 15,000 seabed samples for use as a standalone dataset. Analytical data includes textural composition (mud, sand, gravel), summary statistics for particle size distributions, textural class and calcium carbonate values (where available). Information on sample water depth, location and marine survey is also provided. The sample set spans the coast, continental shelf, slope and deep ocean locations across the Australian marine region (covering the extent of the AusBathyTopo 250m 2023 grid). This dataset has utility for a broad range of purposes including seabed characterisation, sediment transport modelling, habitat characterisation, seabed engineering studies and fundamental geological and sedimentological research.</div><div><br></div><div>Additional metadata of this dataset are provided in the word document accompanied with the dataset. The metadata document describes the attribute table, the sediment carbonate classification and the sediment facies.</div>