From 1 - 10 / 142
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • Phase 1 report (Exposure/Impact Analysis) for Assessment of Groundwater Vulnerability to Climate Change in the Pacific Islands Project.

  • Development of coal mines and coal seam gas (CSG) resources can significantly impact groundwater systems, hydrogeological processes and the surface environment. Consequently, a sound understanding of basin-scale hydrogeology Is critical to developing effective water management strategies. The Australian Government Department of Sustainability, Environment, Water, Population and Communities recently funded investigation of the potential impacts of the development of coal mining and CSG production in several Australian coal basins. The Laura Basin was investigated as part of this program due to the significant environmental and cultural heritage values of the region which include several National Parks and the Great Barrier Reef Marine Park. The Laura Basin is a geological basin on Cape York Peninsula, QLD. There has been relatively limited development of the groundwater resources of the basin to date, which predominantly occur in Mesozoic sandstone units, the Dalrymple Sandstone and the Gilbert River Formation, which are contiguous with the Great Artesian Basin rocks of the Carpentaria Basin.

  • This data set comprises one of three archives of Geoscience Australia work in the project "A Consistent Approach to Groundwater Recharge Determination in Data Poor Areas". The project was carried out by CSIRO and Geoscience Australia and was funded by the National Water Commission Raising National Water Standards program. The data contained included Original data sourced for the project, Final data produced by the project, MXD's of maps created, and tools used within the project. The archives created for this project comprise: 1. Data archive. Data set stored in the GA CDS. Geocat Record number 79804 2. Adminstration and publication archive. Documents stored in TRIM Project P10/67 RECHARGE-DISCHARGE PROJECT 3. References archive. Endnote library located at \\nas\eg\water\References\Recharge_Discharge_Project.enl For more information about the creation of these archives, including the location of files, see TRIM D2014-102808 For more information about the project, see the following references: Leaney F, Crosbie R, O'Grady A, Jolly I, Gow L, Davies P, Wilford J and Kilgour P. 2011. Recharge and discharge estimation in data poor areas: Scientific reference guide. CSIRO: Water for a Healthy Country National Research Flagship. 61 pp (GA Record No. 2011/46 GACat # 71941) Jolly I, Gow L, Davies P, O'Grady A, Leaney F, Crosbie R, Wilford J and Kilgour P. 2011. Recharge and discharge estimation in data poor areas: User guide for the recharge and discharge estimation spreadsheets and MapConnect. CSIRO: Water for a Healthy Country National Research Flagship. 40 pp. (GA Record No. 2011/35 GeoCat # 71940) Pain, C.F., Gow, L.J, Wilford, J.R. and Kilgour, P. 2011. Mapping approaches to recharge and discharge estimation and associated input datasets. A report for CSIRO: Water for a Healthy Country National Research Flagship. (Professional Opinion No. 2011/01 GeoCat # 70392)

  • Workshop Proceedings of the National Coastal Groundwater Management Knowledge Transfer Workshop held in Canberra on 28-29 May 2013

  • Geoscience Australia was recently involved in the reconceptualisation of the hydrogeology of the Great Artesian Basin (GAB), as part of the Great Artesian Basin Water Resource Assessment. The project refined the understanding of key hydrostratigraphic units within the GAB. This brochure describes key aquifers in the GAB and is designed to be distributed with samples from the aquifers. Aquifers covered are the Winton-Mackunda, Cadna-owie-Hooray, Adori Sandstone/Springbok Sandstone, Hutton Sandstone and Precipice Sandstone. Brochure prepared for the International Association of Hydrogeologists Congress 2013, Perth, Australia

  • Difference between 'pre-development' (1900-1920) and modern (2000-2010) groundwater levels at selected bore locations in the Great Artesian Basin This GIS data set was produced by CSIRO for the Great Artesian Basin Water Resource Assessment and used in Figure 7.5 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76931. For further information contact Phil Davies, Research Projects Officer, CSIRO Land and Water, Waite Road, Urrbrae SA 5064

  • Interpreted groundwater flow divide in the Hutton Sandstone between the Surat and Clarence-Moreton basins in the Great Artesian Basin (to be used in conjunction with dataset 'Surat / Clarence-Moreton basins Hydrogeological Boundary' (GA 2013, Catalogue #75830) to define the easternmost boundary of the GAB) This data set provides an approximate location of the groundwater divide as a polygon in Shapefile format. This data set was used in: Figure 5.3 in Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. Figure 5.3 in Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia Figure 14 in Smerdon BD, Marston FM and Ransley TR (2012) Water resource assessment for the Surat region. Summary of a report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. 16pp. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 77024.

  • Coal Seam Gas (CSG) activities will have an impact on groundwater. But what will be the magnitude, extent and timing of that impact? Faced with this question, and in the absence of comprehensive datasets, groundwater professionals are unable to respond with confidence. CSG activities, with some notable exceptions, are mostly carried out in stratigraphic units far below, or at a lateral distance from, those monitored by existing groundwater monitoring networks. How then can groundwater experts advise regulators and industry appropriately as to the likelihood and nature of impacts to groundwater from CSG activities? Commonwealth approval conditions for the development of CSG projects in the Surat Basin are empowered by the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) as it pertains to the protection of Matters of National Environmental Significance (MNES) including springs that host EPBC-listed threatened species and communities. The projects are approved on the basis that there will be no significant impact to MNES. The approval conditions include the requirement for regional monitoring of groundwater levels and quality for the early detection of impacts to springs. In the absence of sufficient time series data that would support sophisticated modelling, the predictive power of simple groundwater flow calculations, together with regional groundwater models, may be deployed to evaluate the envelope of magnitude, extent and timing of groundwater responses. It is proposed that these same tools may be used to develop both monitoring networks and triggers for remedial action that can adapt to increased data availability and changing production scenarios and take account of the inertia in both the physical response within the groundwater system and the institutional response from either the regulator or industry. This will facilitate the protection of groundwater-dependant ecosystems through timely and adaptive management responses whilst ensuring that CSG projects are neither injudiciously promoted, nor prematurely curtailed, through lack of monitoring data or through misinterpretation of changes in those data. This abstract was developed for the International Association of Hydrogeologists Congress, Perth, 2013 based on work undertaken for Department of Sustainability, Environment, Water, Population and Communities.

  • This Ord Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Ord Basin, an intracratonic sedimentary basin, covers about 8000 square kilometres on the border of Western Australia and the Northern Territory. It was once part of the extensive Centralian Superbasin, which deposited sediments across central and northern Australia from the Proterozoic to early Palaeozoic era. The Ord Basin comprises three synclines with up to 2500 m of Cambrian and Devonian sedimentary rocks, separated by major faults and Proterozoic basement highs. The basin's northern boundary is defined by the Halls Rewards Fault and Proterozoic basement rocks, separating it from the Bonaparte Basin. The western edge overlies rocks of the Paleoproterozoic Halls Creek Orogen, while the eastern margin is separated from the Wiso Basin by volcanic Kalkarindji Province and Proterozoic Birrindudu and Victoria basins. The southern boundary is formed by the Negri Fault and Proterozoic basement highs. The depositional history of the Ord Basin can be divided into three phases. The early Cambrian witnessed extensive basaltic volcanism, forming the Antrim Plateau Volcanics. Subsequently, the Cambrian marine transgression deposited carbonates and clastic rocks of the Goose Hole Group, including the Elder and Negri Subgroups. The Late Devonian saw the deposition of continental sandstones and conglomerates of the Mahony Group. Throughout the basin's evolution, tectonic movements and erosional processes shaped its present configuration. The Alice Springs Orogeny (450 to 300 Ma) caused deformation and landscape changes, resulting in the deposition of the Mahony Group. Periodic reactivation of growth faults in the underlying Birrindudu Basin and subsequent erosion contributed to the basin's current structure. The Ord Basin's three synclines are the Hardman Syncline (southern and largest), the Rosewood Syncline (central), and the Argyle Syncline (northern). The Hardman Syncline holds the full succession of basin strata.