From 1 - 10 / 71
  • This dataset represents New South Wales 5 metre Digital Elevation Model (DEM) which has been derived from LiDAR and merged together from various projects and will be continually updated.

  • This service represents a hill shade (ground surface topography) and excludes vegetation features which has been dervied from the National DEM SRTM 1 Second. The sun angle used is 315 degrees azimuth and 30 degrees altitude. It is intended for large scale use for low lying area feature identification. The processing method is decsribe in the 1 Second SRTM Derived Product User Guide (Geoscience Australia, 2011)

  • This service represents the National DEM 1 Second Percentage Slope product

  • This Carpentaria Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Carpentaria Basin is a vast intra-cratonic sedimentary basin situated on and offshore in north-eastern Australia, covering around 550,000 square kilometres across Queensland and the Northern Territory. It comprises predominantly sandstone-rich rock units deposited during sea level highs from the Late Jurassic to Mid Cretaceous. The basin overlies a heterogeneous Proterozoic basement and is separated from contemporaneous sedimentary structures by basement highs and inliers. Four main depocentres within the larger Carpentaria Basin form four major sub-basins: the Western Gulf Sub-basin, Staaten Sub-basin, Weipa Sub-basin, and Boomara Sub-basin. While the basin is extensive and continuous in Queensland, it becomes more heterogeneous and discontinuous in the Northern Territory. Remnants of the basin's stratigraphy, referred to as the Dunmarra Basin, are found along the Northern Territory coast and inland. The depositional history commenced during the Jurassic with down warping near Cape York Peninsula, resulting in the Helby beds and Albany Pass beds' concurrent deposition. The basin experienced marine transgressions during the Cretaceous, with the Gilbert River Formation widespread and the Wallumbilla Formation occurring during sea level highs. The Carpentaria Basin's strata are relatively undeformed and unmetamorphosed. The Northern Territory sequence displays slightly different stratigraphy, limited to the height of the Aptian marine transgression above the Georgina Basin. The Walker River Formation and Yirrkala Formation represent key units in this area, outcropping as tablelands and mesas largely unaffected by tectonism.

  • This service represents the National DEM 1 Second Smoothed product

  • This Karumba Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Karumba Basin is a shallow geological basin in Queensland, Australia, composed of sedimentary rocks and unconsolidated sediments that cover the Mesozoic Carpentaria Basin. Deposition started during the Late Cretaceous to Early Paleocene and has continued into the Holocene. The basin extends from western Cape York Peninsula into the Gulf of Carpentaria, where it connects with Cenozoic sediment deposits in Papua New Guinea. Although the sediments in both areas share lithostratigraphic and biostratigraphic similarities, their tectonic histories differ. The basin's structural geology is relatively uniform, with a significant downwarp known as the Gilbert-Mitchell Trough in Cape York Peninsula and another depocenter offshore in the Gulf of Carpentaria. The depositional history and stratigraphy of the Karumba Basin can be divided into three cycles of deposition, erosion, weathering, and the formation of stratigraphic units. The earliest cycle (the Bulimba Cycle) began in the Late Cretaceous to Early Paleocene, with episodes of significant uplift along the eastern margins of the basin. This resulted in the deposition of the Bulimba Formation and the Weipa Beds, primarily consisting of claystone, sandstone, conglomerate, and siltstone with minor coal layers. This cycle was followed by a period of planation and deep weathering, creating the Aurukun Surface. The second cycle (the Wyaaba Cycle) was initiated by large-scale earth movements along the Great Dividing Ranges, forming much of the eastern boundary of the Karumba Basin, and leading to the formation of the Wyaaba beds and other equivalent units. These beds consist mainly of fluvial to paralic clay-rich sandstone, conglomerate, siltstone, and claystone. In the south-west, Oligocene to Pliocene limestone deposits also formed in lacustrine settings, and were sourced from and deposited upon the underlying Georgina Basin. The cycle ended with ensuing periods of erosion and weathering and the development of the Pliocene Kendall Surface, as well as widespread basaltic volcanism. The final cycle (the Claraville Cycle) started in the Pliocene and continues to the present. It has experienced several episodes of uplift and deposition controlled by sea level change, climate variability and volcanism in the south. The Claraville beds are unconsolidated sediments, chiefly comprised of clayey quartzose sand and mud with minor gravels, reaching approximately 148 m thickness offshore, and approximately 70 m onshore. As this cycle is still ongoing, no terminal surface has been formed, and most units consist of unconsolidated surficial sediments.

  • This Sydney Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Sydney Basin, part of the Sydney–Gunnedah–Bowen basin system, consists of rocks dating from the Late Carboniferous to Middle Triassic periods. The basin's formation began with extensional rifting during the Late Carboniferous and Early Permian, leading to the creation of north-oriented half-grabens along Australia's eastern coast. A period of thermal relaxation in the mid Permian caused subsidence in the Bowen–Gunnedah–Sydney basin system, followed by thrusting of the New England Orogen from the Late Permian through the Triassic, forming a foreland basin. Deposition in the basin occurred in shallow marine, alluvial, and deltaic environments, resulting in a stratigraphic succession with syn-depositional folds and faults, mostly trending north to north-east. The Lapstone Monocline and Kurrajong Fault separate the Blue Mountains in the west from the Cumberland Plain in the central part of the basin. The Sydney Basin contains widespread coal deposits classified into geographic coalfield areas, including the Southern, Central, Western, Newcastle, and Hunter coalfields. These coalfields are primarily hosted within late Permian strata consisting of interbedded sandstone, coal, siltstone, and claystone units. The coal-bearing formations are grouped based on sub-basins, namely the Illawarra, Tomago, Newcastle, and Wittingham coal measures, underlain by volcanic and marine sedimentary rocks. Deposition within the basin ceased during the Triassic, and post-depositional igneous intrusions (commonly of Jurassic age) formed sills and laccoliths in various parts of the basin. The maximum burial depths for the basin's strata occurred during the early Cretaceous, reaching around 2,000 to 3,000 metres. Subsequent tectonic activity associated with the Tasman Rift extension in the Late Cretaceous and compressional events associated with the convergence between Australia and Indonesia in the Neogene led to uplift and erosion across the basin. These processes have allowed modern depositional environments to create small overlying sedimentary basins within major river valleys and estuaries, along the coast and offshore, and in several topographic depressions such as the Penrith, Fairfield and Botany basins in the area of the Cumberland Plain.

  • This Tasmania Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Late Carboniferous to Late Triassic Tasmania Basin covers approximately 30,000 square kilometres of onshore Tasmania. The basin contains up to 1500 m of mostly flat-lying sedimentary rocks, and these are divided into two distinct lithostratigraphic units, the Lower and the Upper Parmeener Supergroup. The Lower Parmeener Supergroup comprises Late Carboniferous to Permian rocks that mainly formed in marine environments. The most common rock types in this unit are mudstone, siltstone and sandstone, with less common limestone, conglomerate, coal, oil shale and tillite. The Upper Parmeener Supergroup consists predominantly of non-marine rocks, typically formed in fluvial and lacustrine environments. Common rock types include sandstone, siltstone, mudstone and minor basalt layers. Post-deposition the rocks of the Parmeener Supergroup experienced several major geological events, including the widespread intrusion of tholeiitic dolerite magma during the Middle Jurassic.

  • This Gippsland Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Gippsland Basin is an asymmetrical east-trending rift structure that originated during rifting in the Late Jurassic to Early Cretaceous, as Australia and Antarctica began to separate. Over time, it developed into a continental passive margin basin, with sedimentation continuing to the present day. The basin is characterized by four main phases of tectonic evolution, interspersed with eustatic sea-level variations: initial rifting and extension, mid-Cretaceous contraction, renewed extension, and cessation of rifting in the middle Eocene. The basin's geological structures consist of mainly east to north-east trending features, with the west dominated by north-east structures due to the influence of basement trends. Major fault systems are prominent, compartmentalizing the basin into platforms and depressions separated by bedrock highs. The basin's complex stratigraphic succession reveals fluvial, deltaic, marginal marine, and open marine depositional environments. The sedimentary sequence includes terrigenous siliciclastic sediments from the Upper Cretaceous to Eocene, followed by post-rift sands, clays, coals, and limestones/marls of Oligocene to Holocene age. The Gippsland Basin's sediments are subdivided into four main stratigraphic groups: the Strzelecki, Latrobe, Seaspray, and Sale groups. The Strzelecki Group, dating from the Late Jurassic to Early Cretaceous, consists of non-marine sedimentary rocks deposited in fluvial and lacustrine environments. The Latrobe Group, from Late Cretaceous to early Oligocene, contains siliciclastic sediments deposited in various non-marine to marginal marine settings, showing significant lateral lithofacies variations. The Seaspray Group, dating from Oligocene to Pliocene, formed during a post-rift phase, characterized by marine limestone and marl units and continental clastic sediments. Lastly, the Sale Group consists of Miocene-to-Recent continental clastic sediments forming a thin veneer over the onshore portion of the basin. The Gippsland Basin also contains several basaltic lava fields, with two notable volcanic units—the Thorpdale Volcanics and Carrajung Volcanics—part of the Older Volcanics in Victoria. Overall, the Gippsland Basin's geological history and diverse sedimentary deposits make it a significant area for various geological and geophysical studies, including its hydrocarbon resources concentrated in offshore Latrobe Group reservoirs.

  • This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Nicholson Basin is a Mesoproterozoic sedimentary basin spanning Queensland and the Northern Territory and is bordered by neighbouring provinces and basins. The basin unconformably overlies the Lawn Hill Platform of the Mount Isa Province to the east, is bound by the Warramunga and Davenport provinces to the south-west, the Murphy Province to the north and the McArthur Basin to the north-west. It extends southwards under younger cover sequences. Rock units in the basin are correlated with the Roper Group in the McArthur Basin, forming the 'Roper Superbasin.' The underlying Mount Isa Province contains potential shale gas resources. The basin mainly consists of sandstone- and siltstone-bearing units, including the South Nicholson Group, with a prevailing east to east-northeast structural grain. Mild deformation includes shallowly plunging fold axes and numerous faults along a north-west to south-east shortening direction. Major geological events affecting the South Nicholson Basin region include the formation of the Murphy Province's metamorphic and igneous rocks around 1850 million years ago (Ma). The Mount Isa Province experienced deposition in the Leichhardt Superbasin (1800 to 1750 Ma) and Calvert Superbasin (1725 to 1690 Ma). The Isa Superbasin, with extensional growth faulting in the Carrara Sub-basin (~1640 Ma), deposited sediments from approximately 1670 to 1590 Ma. Subsequently, the South Nicholson Group was deposited around 1500 to 1430 Ma, followed by the Georgina Basin's sedimentation. The basin shows potential for sandstone-type uranium, base metals, iron ore, and petroleum resources, while unconventional shale and tight gas resources remain largely unexplored. The Constance Sandstone holds promise as a petroleum reservoir, and the Mullera Formation and Crow Formation serve as potential seals.