mineral deposits
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The national mineral deposits dataset covers 60 commodities and more than 1050 of Australia's most significant mineral deposits - current and historic mines and undeveloped deposits. Subsets can also be created based on any attribute in the database (e.g. commodity, geological region, state/territory).
-
Presented at the Evolution and metallogenesis of the North Australian Craton Conference, 20-22 June 2006, Alice Springs. The Eastern Tanami region of northern Australia has emerged over the last two decades as the largest gold producing region in the Northern Territory, with an estimated total resource of >12 Moz Au. Gold is present in epigenetic quartz veins hosted by metasediments and mafic rocks, and in sulphide-rich replacement zones within banded iron formations (BIF). Most deposits are associated with late (D5) faults and shear zones. Structures active during D5 include ESE-trending sinistral faults that curve into north-trending reverse faults localised between and around granitoid domes. Limited geochronological data suggest that most gold mineralisation is temporally associated with granitoid intrusion at about 1815 Ma to 1790 Ma. The region contains over 100 gold occurrences, largely concentrated in three goldfields: Dead Bullock Soak (DBS); The Granites; and the Tanami. The DBS goldfield (total resource >7.0 Moz Au) contains mineralisation in folded greenschist facies siltstone, BIFs, and chert of the Dead Bullock Formation. At Callie, the largest deposit in the region (>6.0 Moz Au), mineralisation is in D5 sheeted quartz veins associated with fold closures within carbonaceous metasiltstone. The remaining DBS deposits consist of Au + quartz ± carbonate stringers in BIF and chert beds and the gold is contained within arsenopyrite, pyrrhotite and minor pyrite. <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&catno=64764">Evolution and metallogenesis of the North Australian Craton Conference Abstracts</p>
-
This map is produced as part of a series of three maps showing selected mines and mineral deposits and commodities throughout Australia for 2007 on a gravity raster image.
-
An integrated package comprising geological, structural, geophysical, geochronological and geochemical data. The GIS encompasses the outcropping and covered portions of Palaeoproterozoic and Mesoproterozoic rocks straddling the NSW-SA border (the Broken Hill, Euriowie, Olary, Mount Painter and Mount Babbage Inliers). The GIS features recent data collected by the Broken Hill Exploration Initiative.
-
Presented at the Evolution and metallogenesis of the North Australian Craton Conference, 20-22 June 2006, Alice Springs. The Tennant Creek goldfield, the third largest goldfield in the Northern Territory, producing over 150 tonnes of gold (Wedekind et al., 1989), was only discovered in the mid-1930s due to the association of gold with ironstone rather than quartz veins. Over the last two decades ironstone-hosted gold deposits have been included in the group of deposits termed iron-oxide copper-gold (IOCG) deposits (Hitzman et al., 1992). Elsewhere in the Northern Territory, prospects with IOCG characteristics have been recognised in the southeastern Arunta (Hussey et al., 2005), and potential for these deposits has been recognised in the Mount Webb area of the Warumpi Province (Wyborn et al., 1998). <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&catno=64764">Evolution and metallogenesis of the North Australian Craton Conference Abstracts</p>
-
Australia's Identified Mineral Resources is an annual nation-wide assessment of Australia's ore reserves and mineral resources.
-
The North Pilbara Terrane has the largest variety of mineral deposits of any Archaean province. It contains the oldest known examples of volcanic-hosted massive sulphide (VHMS), lode Au, porphyry Cu, orthomagmatic Ni-Cu-PGE-V, pegmatitic Ta-Sn and epithermal deposits, with a diversity more characteristic of Phanerozoic mobile belts. Despite this diversity the North Pilbara Terrane appears to lack any major mineral deposits, with the exception of the Wodgina Ta-Sn pegmatite field. Below, we present the metallogenic history of the North Pilbara Terrane in the context of its tectonic development and then compare it to other Archaean provinces to assess controls on metal endowment.
-
This report deals with the results of 25,000 ft. of boring over an area of 15 sq. miles. Twenty-six coal seams were identified and named. Total reserves of all seams with band-free thickness greater than 4.0 ft. are 200,000,000 tons. Net open-cut reserves (to 9:1 ratio) of 7,500,000 tons over an area of 400 acres were tested and defined on four seams. All work in the Howick Area was done in the period March, 1952, to June, 1953.
-
The rare-earth elements (REE) are a group of seventeen speciality metals that have unique and diverse chemical, magnetic, and luminescent properties that make them strategically important in a number of high-technology industries. Consequently, the REE are increasingly becoming more attractive commodity targets for the mineral industry. This paper presents a comprehensive review of the distribution, geological characteristics and resources of Australia's major REE deposits. REE in Australia are associated with igneous, sedimentary, and metamorphic rocks in a wide range of geological environments. Elevated concentrations of these elements have been documented in various heavy-mineral sand deposits (beach, dune, marine tidal, and channel), carbonatite intrusions, (per)alkaline igneous rocks, iron-oxide breccia complexes, calc-silicate rocks (skarns), fluorapatite veins, pegmatites, phosphorites, fluviatile sandstones, unconformity-related uranium deposits, and lignites. The distribution and concentration of REE in these deposits are influenced by various rock-forming processes including enrichment in magmatic or hydrothermal fluids, separation into mineral species and precipitation, and subsequent redistribution and concentration through weathering and other surface processes. The lanthanide series of REE (lanthanum to lutetium) and yttrium, show a close genetic and spatial association with alkaline felsic igneous rocks, however, scandium in laterite profiles has a closer affinity with ultramafic/mafic igneous rocks.
-
Comprehensive studies of the well preserved, Paleoarchean Panorama volcanic-hosted massive sulfide (VHMS) district provide for the first time definitive evidence that Zn, Pb, Cu, Mo and Ba were leached from the base of the volcanic pile and redeposited at the top in VHMS deposits. This leaching provided more than enough metal to form known deposits, implying that direct input of metal is not required. Sulfur is depleted from the base of the volcanic pile, in line with an increase in Fe2O3/FeO and hematite alteration. These data, combine with sulfur isotope data, indicate that seawater sulfate reduction was facilitated by the oxidation of rock FeO to hematite at high temperature in the H2S stability field. This is the first time such processes have been demonstrated regionally in ancient VHMS mineral systems. The data presented here require Paleoarchean seawater to be sulfate-bearing.