From 1 - 10 / 836
  • The cartographic collection of the Doc Fisher Geoscience Library consists of the maps and air photos created or acquired by agency staff since the formation of BMR in 1946. This includes maps produced by agencies which have merged with these over the years, such as AUSLIG. Maps held include: Australian geological map series (1:250,000, 1:100,000 and the 1 mile series); topographic maps produced by NATMAP and its predecessors (1:250,000, 1:100,000 and 1:50,000) - latest editions only; various Australian geochemical, geophysical and other thematic maps; geoscience map series from other countries acquired on an exchange basis, including some with accompanying explanatory notes; Non-series maps acquired by donation or exchange; atlases. The Air photos are predominantly those used for mapping Australia and, to a lesser extent, Papua New Guinea and Antarctica, by BMR/AGSO from the 1940s to the 1980s. Geographical coverage of the sets is not complete, but many individual photos are unique in that they have pin points, overlays or other markings made by teams in the field. The Papua New Guinea photographs in the collection may, in many cases, be the only existing copies. Flight diagrams are also held for many (but not all) sets of air photos. Some other related materials, such as montages of aerial photographs (orthophotos), are also represented in the collection.

  • In October/November 1990 the Australian Bureau of Mineral Resources (BMR) carried out an 18 day combined water column geochemical and high resolution seismic survey on the Vulcan Sub-basin region of the Timor Sea. This report presents the results of the water column geochemical (direct hydrocarbon detection or DHD) aspects of that program. During the program, 2730 km of DHD data were obtained along 44 lines over the Vulcan Sub-basin, the Ashmore Platform and the Londonderry High. Ten water bottom hydrocarbon anomalies were detected during the program. Seven of these anomalies fell into two distinct groupings, which were associated with: - the Skua field and surrounding fault blocks, - the intersection of the NE-trending Vulcan Sub-basin/Londonderry High Boundary Zone with a prominent NW-trending transfer fault zone. The composition of the hydrocarbon anomalies within the Skua grouping was generally consistent with them having an oil-prone, Late Jurassic source,, and is thus compatible with the known composition of the hydrocarbons in the Skua accumulation. The composition of the other grouping was more consistent with a gas/condensate source; they may have originated from more gas prone Permo-Triassic source rocks on the edge of the Londonderry High. The remaining anomalies were all very weak, and may have been due to biogenic activity. The data indicate that the DHD technique can be useful at a prospect level within the Timor Sea (for example, it did remotely detect the Skua accumulation). The types of accumulations which are most easily detected using DHD are those with a significant gas cap, a relatively shallow (<2000 m) reservoir, and faulting which extends from the reservoir horizon to near the seafloor. Furthermore, the data suggest that transfer fault zones provide important pathways for hydrocarbon migration in this region.

  • A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbours through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). Here we present an account of the field methods and data summaries (location maps and comprehensive metadata) for the collection of 200 seabed sediment samples designated for grain size and inorganic elemental analyses, and organic matter concentration, source and reactivity measures. Metadata is also provided for seagrass observations and hardground occurrences. The seagrass observation data will be incorporated into DENR's seagrass database. The baseline environmental datasets acquired during this survey will be merged with like datasets from three other surveys conducted as part of the overall project to create a set of interpolated maps of abiotic parameters with full coverage for the region. Some of the maps will be integrated into final habitat mapping products. Baseline data from the survey will also be made publically available via the Geoscience Australia website (http://www.ga.gov.au/).

  • Map(s) of Th (thorium) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • Map(s) of Tb (terbium) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • Map(s) of U (uranium) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • Map(s) of Y (yttrium) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • Map(s) of W (tungsten) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.