earthquakes
Type of resources
Keywords
Publication year
Scale
Topics
-
The Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Geoscience Australia (GA) have developed a long-term partnership in order to better understand and reduce the risks associated with earthquake hazards in the Philippines. The Project discussed herein was supported by the Australian Agency for International Development (AusAID). Specifically, this partnership was designed to enhance the exposure and damage estimation capabilities of the Rapid Earthquake Damage Assessment System (REDAS), which has been designed and built by PHIVOLCS. Prior to the commencement of this Project, REDAS had the capability to model a range of potential earthquake hazards including ground shaking, tsunami inundation, liquefaction and landslides, as well as providing information about elements at risk (e.g., schools, bridges, etc.) from the aforementioned hazards. The current Project enhances the exposure and vulnerability modules in REDAS and enable it to estimate building damage and fatalities resulting from scenario earthquakes, and to provide critical information to first-responders on the likely impacts of an earthquake in near real-time. To investigate this emergent capability within PHIVOLCS, we have chosen the pilot community of Iloilo City, Western Visayas. A large component of this project has been the compilation of datasets to develop building exposure models, and subsequently, developing methodologies to make these datasets useful for natural hazard impact assessments. Collection of the exposure data was undertaken at two levels: national and local. The national exposure dataset was gathered from the Philippines National Statistics Office (NSO) and comprises basic information on wall type, roof type, and floor area for residential buildings. The NSO census dataset also comprises crucial information on the population distribution throughout the Philippines. The local exposure dataset gathered from the Iloilo City Assessors Office includes slightly more detailed information on the building type for all buildings (residential, commercial, government, etc.) and appears to provide more accurate information on the floor area. However, the local Iloilo City dataset does not provide any information on the number of people that occupy these buildings. Consequently, in order for the local data to be useful for our purposes, we must merge the population data from the NSO with the local Assessors Office data. Subsequent validation if the Iloilo City exposure database has been conducted through targeted foot-based building inventory surveys and has allowed us to generate statistical models to approximate the distribution of engineering structural systems aggregated at a barangay level using simple wall and roof-type information from the NSO census data. We present a comparison of the national and local exposure data and discuss how information assembled from the Iloilo City pilot study - and future study areas where detailed exposure assessments are conducted - could be extended to describe the distribution of building stock in other regions of the Philippines using only the first-order national-scale NSO data. We present exposure information gathered for Iloilo City at barangay level in a format that can be readily imported to REDAS for estimating earthquake impact.
-
The Australian Seismological Report 2008 provides a summary of earthquake activity for Australia for 2008. It also provides a summary of earthquakes of Magnitude 5+ in the Australian Region, as well as an summary of Magnitude 6+ earthquakes worldwide. It has dedicated state and territory earthquake information including: largest earthquakes in the year; largest earthquakes in the state; and tables detailing all earthquakes detected by Geoscience Australia during the year. There are also contributions from Gary Gibson and Environmental Systems and Services describing Seismic Networks and providing Earthquake locations.
-
The tectonic setting of Australia has much in common with North America east of the Rocky Mountains because stable continental crust makes up the whole continent. The seismicity is still sufficient to have caused several damaging earthquakes in the past 50 yr. However, uncertainties in the earthquake catalogue limit the reliability of hazard models. To complement traditional hazard estimation methods, alternative methods such as paleoseismic, geodynamic numerical models and high-resolution global positioning system (GPS) are being investigated. Smoothed seismicity analysis shows that seismic recurrence varies widely across Australia. Despite the limitations of the catalogue, comparisons of regional strain rates calculated from the seismicity are consistent with data derived from geodetic techniques. Recent paleoseismic studies, particularly those examining high-resolution digital elevation models, have identified many potential prehistoric fault scarps. Detailed investigation of a few of these scarps suggests that the locus of strain release is migratory on a time scale an order of magnitude greater than the instrumental seismic catalogue, consistent with Australia's low-relief landscape. Numerical models based on the properties of the Australian plate provide alternative constraints on long-term crustal deformation. Two attenuation models for Australia have recently been developed. Because Australiais an old, deeply weathered continent that has experienced little Holocene glaciation, it has very little material comparable to North American "hard rock" site classification. The combination of relatively low attenuation crust under widespread thick weathered regolith makes the use of ground-motion and site response models derived from Australian data vital for Australian hazard assessment. Risk modeling has been used to assess sensitivities associated with variations in both source and ground-motion models. Systematic analyses allow the uncertainty in these models to be quantifi ed. Uncertainty in most input models contributes a 30%-50% variation in the predicted loss. Where a city lies in a thick sedimentary basin, such as Perth, uncertainties in the behavior of the basin can result in a 500% variation in predicted loss.
-
The Asia-Pacific region is home to well over half the world's population and is also the focus of some of earth's most intense geological activity. It is no surprise therefore that geological hazards, in particular earthquake and volcano hazards, make the Asia-Pacific region the scene of som e of the worlds most lethal natural disasters. While this is evident form a perusal of historical data relating to natural disasters, it is not clear how well such historical data can be used as a guide for high -impact events that might be expected in the future. This uncertainty is due to (1) how poorly extreme geological events having long recurrence intervals are represented in the relatively short historical record, and (2) the failure of the historical record to account for recent demographic trends, in particular the explosive growth of population in the Asia -Pacific region and its rapid urbanisation during the 20 th century. We present here two novel techniques for assessing the potential impacts of volcanic and earthquake events on human population in the Asia Pacific region. For volcanic risk, we have calculated the frequency of large eruptions, aggregated for the countries of the Asia -Pacific region, using data provided by the Smithsonian Institution's Global Volcanism Program. These eruption frequ encies have been combined with an analysis of population data for the region to estimate the average number of people who might be affected, in the broad sense of death, injury or loss of essential services, by a major volcanic eruption. For earthquake, risk, we have considered that the potential future high -impact events will be driven by the probability that an earthquake might occur in or adjacent to one of the many megacities of the Asia -Pacific region. Earthquake probabilities near megacities are cal culated from catalogue data, and these are combined with a rough criterion for damage based on earthquake ground motion, to asses potentially affected populations. We present preliminary results of these analyses, which suggest the potential for earthquakes and volcanoes in the Asia-Pacific region to cause future `mega-disasters', for which affected populations may be much larger than the numbers indicated by the historical record.
-
We have developed models for the prediction of bedrock ground motion response spectra in several regions of Australia. In Eastern Australia, we developed models for the Paleozoic Lachlan Fold Belt, and the Sydney Basin that lies within it, and in Western Australia we developed models for the Yilgarn Craton and the adjacent Perth Basin. The models are based on the broadband simulation of accelerograms using regional crustal velocity models and earthquake source scaling relations. For both the Lachlan Fold Belt and Yilgarn regions, we used comparison of synthetic seismograms with the recorded seismograms of small earthquakes to test and modify regional crustal velocity models. In Western Australia, we used the rupture models of the 1968 Mw 6.6 Meckering earthquake and the 1988 Mw 6.25, 6.4 and 6.5 Tennant Creek earthquakes to constrain the scaling relationship between seismic moment and rupture area. Other aspects of the source scaling relations were derived from our scaling relations for earthquakes in eastern North America (Somerville et al., 2001). In eastern Australia, the data available for historical earthquakes are insufficient to constrain earthquake scaling relations, so we have used the relations for Western Australia as well as the relations for the western United States (Somerville et al., 1999). We generated suites of broadband ground motion time histories using these source scaling relations and crustal structure models. These ground motion simulations were used to generate ground motion prediction models for each region. The ground motion models have been compared with the model of Liang et al. (2008) for Western Australia, with models for Eastern North America including Atkinson and Boore (2006), Somerville et al (2001), and Toro et al (1997), and with the NGA models.
-
Since the 2004 Sumatra-Andaman earthquake and Indian Ocean Tsunami, there has been an increase both in the frequency of large earthquakes, and in the data for monitoring the seismic and sea level disturbances associated with them, especially in the Australasian region. The increased number of high-quality recordings available for these large earthquakes provides an important opportunity to assess methods for rapid determination of their source properties, which potentially could be used to support tsunami warning systems. In this presentation we will consider how well the available data allow us to characterise the rupture of a earthquake, consider how rapidly this could be done, and assess how well the resulting models can be used to predict far-field tsunami waveforms.
-
We investigate two intraplate earthquakes in a stable continental region of southwest Western Australia. Both small-magnitude events occur in the top »1 km of crust and their epicenters are located with an accuracy of »100 m (1¾) using satellite Interferometric Synthetic Aperture Radar (InSAR). For the Mw 4.7 Katanning earthquake (10 October 2007) the average slip magnitude is 42 cm, over a rupture area of »1 km2. This implies a high stress drop of 14-27 MPa and, even for this very shallow earthquake, has important implications for regional seismic hazard assessment. The earthquake rupture extends from a depth of around 640 m to the surface, making it a rarely observed intraplate, surface-rupturing event. Using InSAR observations we estimate the coseismic slip distribution of the shallow earthquake, such estimates being rarely available for small magnitude events. For the Mw 4.4 composite Kalannie earthquake sequence (21-22 September 2005) we use a long-term time series analysis technique to improve the measurement of the co-seismic signal, which is a maximum of 27 mm in the line-of-sight direction. Double difference seismic analysis shows some relocated cluster seismicity which corresponds in timing, location and source parameters to the InSAR-observed deformation. This earthquake is the smallest magnitude seismic event investigated using InSAR and demonstrates the capability of the technique to provide important constraints on small-magnitude coseismic events. The shallow depth of both these events adds weight to the suggestion that earthquakes associated with tectonic processes in this area of Western Australia often initiate in the upper 1 km of crust.
-
The Great Sumatra-Andaman Earthquake and Indian Ocean Tsunami of 2004 came as a surprise to most of the earth science community. Few were aware of the potential for the subduction zone off Sumatra to generate giant (Mw>= 8.5) earthquakes, or that such an earthquake might generate a large tsunami. In retrospect, important indicators that such an event might occur appear to have not been well appreciated: (1) the tectonic environment of Sumatra was typical of those in which giant earthquakes occur; (2) GPS campaigns, as well as paleogeodetic studies indicated extensive locking of the interplate contact; (3) giant earthquakes were known to have occurred historically. While it is now widely recognised that the risk of another giant earthquake is high off central Sumatra, just east of the 2004 earthquake, there seems to be relatively little concern about the subduction zone to the north, in the northern Bay of Bengal along the coast of Myanmar. It is shown here that similar indicators suggest the potential for giant earthquake activity is high: (1) the tectonic environment is similar to other subduction zones that experience giant megathrust earthquakes; (2) stress and crustal strain observations indicate the seismogenic zone is locked; and, (3) historical earthquake activity indicates that giant tsunamigenic earthquakes have occurred in the past. These are all consistent with active subduction in the Myanmar subduction zone, and it is hypothesized here that the seismogenic zone there extends beneath the Bengal Fan. The results suggest that giant earthquakes do occur off the coast of Myanmar, and that a very large and vulnerable population is thereby exposed to a significant earthquake and tsunami hazard.
-
With a population of over 250 million people, Indonesia is the fourth most populous country in the world (United Nations, 2013). Indonesia also experiences more earthquakes than any other country in the world (USGS, 2015). Its borders encompass one of the most active tectonic regions on Earth including over 18 000 km of major tectonic plate boundary, more than twice that of Japan or Papua New Guinea (Bird, 2003). The potential for this tectonic activity to impact large populations has been tragically demonstrated by the 20004 Sumatra earthquake and tsunami. In order to inform earthquake risk reduction in Indonesia, a new national earthquake hazard map was developed in 2010 (Irsyam et al., 2010). In this report historical records of damaging earthquakes from the 17th to 19th centuries are used to test our current understanding of earthquake hazard in Indonesia and identify areas where further research is needed. In this report we address the following questions: - How well does our current understanding of earthquake hazard in Indonesia reflect historical activity? - Can we associate major historical earthquakes with known active faults, and are these accounted for in current assessments of earthquake hazard? - Does the current earthquake hazard map predict a frequency and intensity of shaking commensurate with the historical record? - What would the impact of these historical earthquakes be if they were to reoccur today? To help answer questions like these, this report collates historical observations of eight large earthquakes from Java, Bali and Nusa Tenggara between 1699 and 1867. These observations are then used to: - Identify plausible sources for each event; - Develop ground shaking models using the OpenQuake Engine (GEM Foundation, 2015); - Assess the validity of the current national seismic hazard map; and - Estimate fatalities were the historical events to occur today using the InaSAFE (InaSAFE.org, 2015) software.
-
Developed in consultation with Emergency Management Australia (EMA), this kit defines and maps major hazards affecting Australia - earthquakes, tsunamis, landslides, volcanoes, severe storms, cyclones, bushfires, floods and droughts. This kit helps students and teachers recognise risks from different natural hazards and the practical steps we can all take to reduce their effects. The Australian Natural Hazards Education Map Kit contains: - eight colour A3 poster maps with descriptive text - eight blackline A4 map masters - background information on each hazard - student activities - Emergency Management Australia hazard action cards Suitable for primary years 5-6 and secondary years 7-8.