From 1 - 10 / 156
  • The national mineral deposits dataset covers 60 commodities and more than 1050 of Australia's most significant mineral deposits - current and historic mines and undeveloped deposits. Subsets can also be created based on any attribute in the database (e.g. commodity, geological region, state/territory).

  • As part of Geoscience Australia's Onshore Energy Security Program the authors have investigated whether there is any evidence that a sandstone hosted uranium system has operated in the Eromanga Basin and assessed the basin's potential to host significant uranium mineralisation.

  • An integrated package comprising geological, structural, geophysical, geochronological and geochemical data. The GIS encompasses the outcropping and covered portions of Palaeoproterozoic and Mesoproterozoic rocks straddling the NSW-SA border (the Broken Hill, Euriowie, Olary, Mount Painter and Mount Babbage Inliers). The GIS features recent data collected by the Broken Hill Exploration Initiative.

  • Australia's Identified Mineral Resources is an annual nation-wide assessment of Australia's ore reserves and mineral resources.

  • Considerable exploration interest has been generated by the platinum-group-element (PGE) and Ni-Cu potential of the Archean layered mafic-ultramafic intrusions in the west Pilbara Craton, Western Australia. The Munni Munni Intrusion contains the largest known resource of PGEs associated with a layered intrusion in Australia, and the Radio Hill and Mount Sholl intrusions host significant resources of Ni-Cu-Co sulfides. Titaniferous magnetite layers, remobilized sulfides, and structurally controlled hydrothermal polymetallic deposits have also been a focus for exploration in recent years. The ca. 2.9 Ga Munni Munni, Andover, Radio Hill, Mount Sholl, and Sherlock layered intrusions are a cogenetic suite of high-level (<5 kb) bodies that represent some of the oldest mineralizing systems of their type in the world. Although they display similar field relationships and mineralogical, geochemical, and isotopic features, their contrasting chalcophile metal distribution patterns show that the timing and mechanism of the S-saturation event were critical for the development of PGE-enriched sulfide-bearing layers and basal segregations of base-metal sulfides. The intrusions form thick (>5.5 km) 'dike'-like bodies or relatively thin (0.5-2 km) sheets and sills emplaced at different levels along major lithological discontinuities in the upper crust. Rhythmically layered ultramafic components are generally thinner than, and occur along the northern sides of, more massive overlying mafic components. The ultramafic zones consist of dunite, lherzolite, wehrlite, olivine websterite, clinopyroxenite, and websterite. Inverted pigeonite gabbronorite, magnetite gabbro, olivine gabbro, anorthositic gabbro, and anorthosite comprise the mafic sequences. Olivine and clinopyroxene were generally the first minerals to crystallize, except in the Andover Intrusion, where orthopyroxene preceded clinopyroxene and possibly reflects greater contamination of the parent magma by felsic crustal material. The crystallization of chromite was inhibited in the ultramafic zones by the partitioning of Cr into early crystallizing clinopyroxene, thus downgrading the potential for PGE-chromite associations. The PGE mineralization in the Munni Munni Intrusion occurs in the upper levels of a porphyritic plagioclase websterite orthocumulate layer directly below the ultramafic-gabbroic zone contact. Mineral compositional trends and Nd isotopic data indicate that a Pd-Pt-Au-enriched S-undersaturated magnesian basaltic magma was frequently injected into a small magma chamber during formation of the ultramafic zone. A major influx of more fractionated, S-saturated tholeiitic gabbroic magma related to the resident magnesian magma, rapidly inflated the chamber and induced turbulent magma mixing that resulted in the formation of the PGE-bearing porphyritic websterite layer. In contrast, the parent magmas that formed the Mount Sholl, Radio Hill, Andover, and Maitland intrusions were saturated in S before they were emplaced into the magma chambers. In these intrusions gravitational and structural controls were important for the concentration of PGE-poor (5-400 ppb Pt + Pd + Au) massive sulfides in depressions and structural embayments along the basal contacts beneath the thickest sequences of mafic-ultramafic cumulates. The parent magmas to the west Pilbara intrusions were siliceous high-Mg basalts of Al-depleted komatiitic affinity (Barberton-type) with 9-12% MgO, 15-25 ppm Sc, 12-18 ppm Y, low Al2O3/TiO2 (ca. 11, or half chondrite ratios), and light-rare earth enrichment (chondrite-normalized La/Sm = 2.7, La/Lu = 9.0). They were generated with garnet in the residual asthenospheric mantle with probable involvement of a pre-3.0 Ga subduction-modified lithospheric mantle. Isotopic and geochemical modelling suggests that the magmas were contaminated by ca. 3.0-3.3 Ga Archean tonalitic to granodioritic crust before being emplaced into high-level magma chambers.

  • This report deals with the results of 25,000 ft. of boring over an area of 15 sq. miles. Twenty-six coal seams were identified and named. Total reserves of all seams with band-free thickness greater than 4.0 ft. are 200,000,000 tons. Net open-cut reserves (to 9:1 ratio) of 7,500,000 tons over an area of 400 acres were tested and defined on four seams. All work in the Howick Area was done in the period March, 1952, to June, 1953.

  • Map which identifies Australia's diamond deposits, kimberlites, and related rock locations overlaying the 'Magnetic Anomaly Map' image. Includes photo images of major mine fields, and pie charts depicting Australia's diamond production and value in $US against world data. Information compiled from different sources, including mining companies, mining journals and 'Magnetic Anomaly Map'

  • Precambrian layered mafic-ultramafic intrusions in Australia have recently generated considerable exploration interest for their platinum-group element (PGE: Pt, Pd, Rh, Ru, Os, Ir) and Ni-Cu-Co potential. Exploration has been stimulated by the discovery of potential world-class deposits (Voisey?s Bay, Canada; west Musgraves), high metal prices (notably Pd, Pt, and Rh), and a perception that many favourable intrusions are under-explored for different styles of orthomagmatic and hydrothermal mineralisation. Despite the renewed interest, Ni production associated with layered intrusions accounts for only 3% of Australia?s Ni production, and PGE production is currently restricted to the Archaean komatiitic-volcanic associations of the Yilgarn Craton. Exploration programs (see Hoatson & Blake 2000) for Precambrian layered intrusions vary considerably for different styles of precious- and base-metal mineralisation. The four styles of mineralisation considered here are believed to have the greatest potential in the following major orogenic domains: (1) Stratabound PGE-bearing sulphide layers: Yilgarn Craton, Pilbara Craton, Musgrave Block, Gawler Craton; (2) Stratabound PGE-bearing chromitite layers: Halls Creek Orogen, Albany?Fraser Orogen, Yilgarn Craton; (3) Basal segregations of Ni-Cu-Co?PGE sulphides: Musgrave Block, Pilbara Craton, Yilgarn Craton, Halls Creek Orogen, Arunta Block, Gawler Craton; and (4) Hydrothermal PGE remobilisation: Pilbara Craton, Arunta Block, Halls Creek Orogen, Yilgarn Craton, Musgrave Block, Gawler Craton. During the exploration of layered intrusions it is important not to be `blinkered? to a particular model, but to maintain a flexible innovative approach and consider different styles of orthomagmatic and hydrothermal mineralisation at different stratigraphic levels in the intrusion. It should also be borne in mind that it took more than 20 years of intensive exploration to define the J-M Reef of the Stillwater Complex, and it was not until the 1990s that a significant Au-PGE layer (Platinova Reef) was found in the Skaergaard Intrusion, East Greenland?an intrusion which has been investigated in great detail for more than 60 years.

  • Thematic map showing the distribution and age of Australia's diamond deposits and related rock types

  • Full-colour map summarises the major Proterozoic mafic-ultramafic magmatic events in the NT and SA. Eighteen events are recognised with three of these (~1810 Ma, ~1130 Ma,~520 Ma or younger) mineralised (Ni, Cu, Co, PGEs). Inset maps show the distribution of Proterozoic and Archaean rocks, mineral occurrences, large igneous provinces, time-space-event chart, and geophysical-elevation imagery. Geological Map (1:4,000,000 Scale)