From 1 - 10 / 41
  • A new continental-scale geochemical atlas and dataset for Australia were officially released into the public domain at the end of June 2011. The National Geochemical Survey of Australia (NGSA) project, which started in 2007 under the Australian Government's Onshore Energy Security Program at Geoscience Australia, aimed at filling a huge knowledge gap relating to the geochemical composition of surface and near-surface materials in Australia. Better understanding the concentration levels and spatial distributions of chemical elements in the regolith has profound implications for energy and mineral exploration, as well as for natural resource management. In this world first project, a uniform regolith medium was sampled at an ultra-low density over nearly the entire continent, and subsamples from two depths and two grain-size fractions were analysed using up to three different (total, strong and weak) chemical digestions. This procedure yielded an internally consistent and comprehensive geochemical dataset for 68 chemical elements (plus additional bulk properties). From its inception, the emphasis of the project has been on quality control and documentation of procedures and results, and this has resulted in eight reports (including an atlas containing over 500 geochemical maps) and a large geochemical dataset representing the significant deliverables of this ambitious and innovative project. The NGSA project was carried out in collaboration with the geoscience agencies from every State and the Northern Territory under National Geoscience Agreements. .../...

  • pH is one of the more fundamental soil properties governing nutrient availability, metal mobility, elemental toxicity, microbial activity and plant growth. The field pH of topsoil (0-10 cm depth) and subsoil (~60-80 cm depth) was measured on floodplain soils collected near the outlet of 1186 catchments covering over 6 M km2 or ~80% of Australia. Field pH duplicate data, obtained at 124 randomly selected sites, indicates a precision of 0.5 pH unit (or 7%) and mapped pH patterns are consistent and meaningful. The median topsoil pH is 6.5, while the subsoil pH has a median pH of 7 but is strongly bimodal (6-6.5 and 8-8.5). In most cases (64%) the topsoil and subsoil pH values are similar, whilst, among the sites exhibiting a pH contrast, those with more acidic topsoils are more common (28%) than those with more alkaline topsoils (7%). The distribution of soil pH at the national scale indicates the strong controls exerted by precipitation and ensuing leaching (e.g., low pH along the coastal fringe, high pH in the dry centre), aridity (e.g., high pH where calcrete is common in the regolith), vegetation (e.g., low pH reflecting abundant soil organic matter), and subsurface lithology (e.g., high pH over limestone bedrock). The new data, together with existing soil pH datasets, can support regional-scale decision-making relating to agricultural, environmental, infrastructural and mineral exploration decisions.

  • Geochemical data from two continental-scale soil surveys in Europe and Australia are presented and compared. Internal project standards were exchanged to assess comparability of analytical results. The total concentration of 26 elements (Al, As, Ba, Ca, Ce, Co, Cr, Fe, Ga, K, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Si, Sr, Th, Ti, V, Y, Zn, and Zr), Loss On Ignition (LOI) and pH are found to be comparable. In addition, for the first time, directly comparable data for 14 elements in an aqua regia extraction (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo, and Pb) are provided for both continents. Median soil compositions are remarkably close, though overall Australian soils are slightly depleted in all elements with the exception of SiO2 and Zr. This is interpreted to reflect the overall longer and, in places, more intense weathering in Australia. Calculation of the Chemical Index of Alteration (CIA) gives a median value of 72% for Australia compared to 60% for Europe. In general, element concentrations vary over 3 (and up to 5) orders of magnitude. Several elements (As, Ni, Co, Bi, Li, Pb, Mn, and Cu) have a lower element concentration by a factor of 2-3 in the soils of northern Europe compared to southern Europe. The break in concentration coincides with the maximum extent of the last glaciation. In Australia the central region with especially high SiO2 concentrations is commonly depleted in many elements. The data provided define the natural background variation for two continents on both hemispheres based on real data. Judging from the experience of these two continental surveys it can be concluded that analytical quality is the key requirement for the success of global geochemical mapping.

  • As a results of representations made to the Bureau of Mineral Resources by the Australian Aluminium Production Commission during 1948 a brief examination was made in July, 1949, of the area known as Sogeri Plateau which is situated some 24 miles east-north-east of Port Moresby. The object of the inspection was to determine whether any bauxitic laterite was present on the plateau and if so to obtain samples for chemical determination of alumina soluble in caustic soda solution, that is, alumina extractable by the Bayer process. Three car traverses of the area were made - one along the Sogeri-Uberi road, one along the Sogeri-Subitana road and one along the Sogeri-Eilogo road. Two grab samples were collected and sent for analysis. The findings of the examination of the area and the results of the chemical analyses are described in this report.

  • From 2007 to 2009, the National Geochemical Survey of Australia (NGSA) project collected sediment samples from 1315 sites located in 1186 catchments (~10 % of which were sampled in duplicate) from across Australia. Overbank sediments were chosen as sampling media, with a near-surface sample (Top Outlet Sediment, TOS, from 0-10 cm below the surface) and a bottom sample (Bottom Outlet Sediment, BOS, ~10 cm interval between approximately 60-80 cm below the surface) being collected. The sample sites were selected to be near outlets or spill points of large catchments, so that overbank sediments there could reasonably be assumed to represent well-mixed, fine-grained composite samples of all major rock and soil types present in the catchment. Sample sites and their corresponding sediment samples were subjected to a detailed description and the determination of bulk parameters in the field (texture, moist and dry colour, field pH). This is complemented by a series of laboratory measurements and analyses reported elsewhere. This report documents the complete field dataset and discusses the pH and soil colour data that were collected in the field. At the time of writing, field pH and colour are the only datasets available for all sites. Maps are presented showing the spatial distribution of these data in both TOS and BOS samples. These data will be the basis of further interpretative work.

  • Recently, continental-scale geochemical surveys of Europe and Australia were completed. Thanks to having exchanged internal project standards prior to analysing the samples, we can demonstrate direct comparability between these datasets for 10 major oxides (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2), 16 total trace elements (As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn and Zr), 14 aqua regia extracted elements (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo and Pb), Loss On Ignition (LOI) and pH. By comparing these new datasets to one another, we can learn lessons about continental-scale controls on soil geochemistry and about critical requirements for global geochemical mapping. Although the median soil compositions of both continents are overall quite similar, the Australian median values are systematically lower, except for SiO2 and Zr. This reflects the generally longer and, locally more intense weathering in Australia (median Chemical Index of Alteration values are 72 and 60% for Australia and Europe, respectively). We found that element concentrations typically span 3 (and up to 5) orders of magnitude on each continent. The comparison of 2 continental geochemical surveys shows that the most critical requirement for global geochemical mapping is good analytical quality. Only where a comprehensive quality control program, including field and laboratory duplicates, internal project standards and Certified Reference Materials, is implemented and documented, are the results credible and comparable with other datasets.

  • A fundamental component of soils is its mineralogy which is a key driver/indicator of important soil properties/processes such as soil pH (acidity), metal availability (e.g. Al, K, Fe, Si, Ca, Mg) and water content/permeability/runoff. However, soil mineralogy is not routinely measured as part of current soil mapping programs at the paddock-, catchment- or continental-scales mainly because currently deployed measurement technologies are not able to deliver soil mineralogy directly, though remote radiometric and microwave sensing technologies do provide useful soil information. In contrast, mineralogy is now being efficiently delivered to the Australian minerals exploration industry through a new generation of field, airborne and spaceborne hyperspectral technologies (www.hyvista.com; nvcl.csiro.au/). This mineral information includes two of the three major soil mineral components, namely: clays (e.g. kaolinite, illite, smectite); and iron/aluminium oxyhydroxides (e.g. hematite. goethite, gibbsite), with specific information being delivered on their composition, abundances and physicochemistries (disorder and chemistry). The third dominant soil mineral component, quartz, is also spectrally measurable but has diagnostic features at wavelengths longer than current "operational" hyperspectral systems. These hyperspectral technologies thus provide an excellent opportunity to transfer mineral mapping capabilities being developed for the minerals industry into the soil mapping application, especially for establishing baseline inventories of soil mineral composition and providing a possible mechanism for quantitative monitoring of change in soil properties related to its mineralogy (e.g. pH, soil loss, water effects, metal activities and possibly soil carbon and salinity). This opportunity is explored using results from a collaborative geological remote sensing project between the CSIRO, the Geological Survey of Queensland and Geoscience Australia (www.em.csiro.au/NGMM, www.nrw.qld.gov.au/science/geoscience/projects/hyperspectral.html) which involves the collection and processing of 25,000 km2 of airborne HyMap imagery (~300 flight-lines at 5m pixel resolution and totalling >1 Terabyte of raw data) from across Queensland, including areas covered by airborne radiometrics and published geology at 1:100 000 scale around the Mount Isa region. The processed hyperspectral data show that lateritic materials in the Tick Hill area comprise relatively abundant iron oxides and kaolinite (poorly ordered) whereas the radiometrics shows these areas as being relatively high Th and U counts. This kaolinite is presumably developed in response to more acid conditions and/or better (downward percolating) drainage. The hyperspectral data also maps extensive areas of Al-smectite (montmorillonite) associated with the weathering of carbonate (calcite and dolomite) parent rocks or as "pedogenic" occurrences in alluvium/colluvium, with the latter sometimes associated with abundant opaline silica (also mapped using the hyperspectral data). These Al-rich smectites are formed in more alkaline conditions where there is sufficient Ca or Mg and water at the near surface and typically show in the radiometric as being poor in K and Th. Muscovite (water-poor, K-bearing white mica) is mapped over exposed parent rocks whereas illite (water-rich, K-bearing white mica) is typically mapped in weathered materials, including many soils and dried lake beds where there is sufficient available K. The radiometric data typically shows these areas as being K-rich. Note that the accuracy of the hyperspectral clay mineral maps was also validated by field sampling and associated laboratory spectral and X-Ray diffraction analyses.

  • This report deals with an investigation of the electrical resistivities of a variety of wet surface soils, gravels and sands. The work may be regarded as preliminary to an investigation by Mr. R.F. Thyer into the detection of electrically resistive bodies buried in wet soils at shallow depths. It was required to determine the range over which the resistivities of surface soils vary, and also the changes that may be expected in any one type of soil between measurements made within any 1 foot of each other. Measurements were made in four localities, three being in the bed or on the banks of the Molonglo River, where the surface materials are sand, gravel, silts, and in some places, clay. The fourth locality was near the head of Sullivan's Creek, where the soil is a heavy black clay.

  • The National Geochemical Survey of Australia (NGSA) project has collected catchment outlet sediment samples from 1315 sites located in 1186 catchments (~10% of which were sampled in duplicate) covering over 80% of Australia, in a collaborative venture between Geoscience Australia and the geoscience agencies of all States and the Northern Territory. At each site, composited samples were collected from two depth intervals: (1) the Top Outlet Sediment from 0-10 cm depth, and (2) the Bottom Outlet Sediment from 60-80 cm depth on average. In the laboratory, the samples were dried, homogenised and separated into two grain-size fractions: (1) a 'coarse' fraction (0-2 mm), and (2) a 'fine' fraction (0-75 um). All together, thus, 5260 samples were prepared for analysis. Bulk splits were also separated for the determination of bulk properties. Samples were analysed for up to 68 chemical elements after Total, Aqua Regia and Mobile Metal Ion digestion methods. Several quality control measures were taken throughout the project and the data quality was assessed in a separate report. This report used the acquired geochemical data to investigate the preliminary implications of this new national dataset on exploration for energy and mineral resources in Australia. This was mostly done by overlaying the NGSA data on coverages of known deposits and occurrences for selected commodities: uranium (U), thorium (Th), gold (Au), copper (Cu), lead (Pb), zinc (Zn) and Rare Earth Elements (REEs). For U, an attempt was made to distinguish between calcrete-related and intrusion-related deposit types, and a local case study in the Pine Creek area is also presented. For Zn, preliminary results from an investigation into discrete field modelling using concentration-area (CA) fractal plots are also presented. Coincidence of known mineral deposits and occurrences with elevated geochemical element concentrations in the same catchment are highlighted. Several catchments have elevated geochemical element concentrations in catchments with no known mineral deposits or occurrences, which provide potential targets for exploration. This technique constitutes a useful and rapid tool for area selection where further, more detailed exploration effort could be expended to test these geochemical anomalies.

  • This report deals with the problem of detecting electrically resistive bodies of small size buried at shallow depths in wet soils. Detection was attempted by means of measurements made on the surface of the soil using the electrical resistivity method. The present report can be regarded as an extension of an earlier one (No. 1943/64B). The purpose of the new tests was twofold. Firstly it was proposed to make tests of 'normal' resistivity effects using a constant electrode arrangement and measuring the resistivity at closely spaced points on water saturated soils. The second part of the testing programme was contingent on the first part proving that under saturated conditions soil resistivities were sufficiently constant to warrent an attempt being made at detection. If this condition of constancy existed, it was proposed to extend the work of the tests, reviewed in the previous report, to actual field conditions. This has been done and the present report deals with the results obtained.