From 1 - 10 / 61
  • This map shows Western Australian and Commonwealth fishing closures, marine conservation areas and maritime boundaries for the area from Esperance to the South Australian border. It has been produced for the National Oceans Office.

  • Benthic chamber measurements of the reactants and products involved with biogenic matter remineralization (oxygen, ammonium, nitrate, nitrite, phosphate, silicate, TCO2 and alkalinity) were used to define solute exchange rates between the sediment and overlying water column of Port Phillip Bay, Australia. Measurements at various sites throughout the bay, conducted during the summers of 1994 and 1995, indicate that the variability in flux values within a site is comparable to year-to-year variability (±50%). Four regions of the bay were distinguished by sediment properties and the northern region was identified as having 3-30 times greater nutrient regeneration rates than the other regions. Benthic recycling accounted for 63 and 72% of the annualized N and P input, respectively, to the entire bay as determined by summing benthic, dissolved riverine, atmospheric and dissolved effluent sources. However, bay-wide sedimentary denitrification accounted for a loss of 63% of the potentially recyclable N. This fraction is higher than many other coastal regions with comparable carbon loading. Denitrification efficiency is apparently not enhanced by benthic productivity nor by bio-irrigation. The rate of bio-irrigation is negatively correlated with denitrification efficiency. Bio-irrigation was studied using radon-222 and CsCl spike injection chamber measurements. Radon fluxes from sediments in Port Phillip Bay were enhanced over the diffusive flux by 3-16 times. The modelled rate of loss of Cs from chamber water was positively correlated with radon flux enhancement results. Both methods identify regions within Port Phillip Bay that have particularly high rates of non-diffusive pore-water overlying water solute exchange.

  • Geoscience Australia developed the guide with the Department of Resources, Energy and Tourism, Department of Environment, Water, Heritage and the Arts and state and territory governments. There were several rounds of public consultation including international consideration by the International Atomic Energy Agency and United States regulators. The guide outlines the best practice principles and approaches that apply generally to mining in Australia, before giving more detailed consideration to best practice environmental protection and regulation for in situ recovery (ISR) mining. It draws on guidelines and regulatory practices applying to uranium mining in South Australia - the only jurisdiction currently with experience of approval and regulation of ISR projects. This guide is not a regulatory document and it should be considered within existing Australian legal and governance frameworks relevant to the mining sector. Its purpose is to set out expectations for approval and regulation of in situ recovery uranium mining (ISR), in line with the Australian Government's policy to ensure that uranium mining, milling and rehabilitation is based on world best practice standards.

  • Attention was directed to the inadequacy of supplies of acid grade fluorspar in Australia when the Bureau of Mineral Resources was asked to sponsor an application to import a quantity from England in 1948. The British Ministry of Supply released a proportion of the amount required but advised that the supply position in England was not secure and only limited quantities could be released for export in the future. The Ministry suggested that if known Australian requirements were likely to be heavy, some material might be supplied as a matter of urgency. An investigation of the fluorspar industry in Australia was then undertaken to estimate future requirements and the extent to which these could be met from domestic sources; the results of this investigation are the subject of this report. The uses, grading, consumption, supply, prices, and projected future supplies of fluorspar are discussed.

  • Earth comprises systems of enormous complexity that sustain all life and control the distribution of our mineral, energy and water resources. Increasingly earth scientists are now moving away from focusing on single domain research on understanding isolated parts of these intricate systems to adopting multidisciplinary, computationally intensive integrated methodologies to model and simulate the real world complexities of earth systems science. Simultaneously developments in information technology are increasing the capacity of computational systems to credibly simulate complex systems. Real world Solid Earth and Environmental Science data sets are extremely heterogenous, complex and large, and are currently in the order of terabytes (1012 bytes). However, the size and complexity of geoscience data sets are also exponentially increasing, as more powerful modern computing systems combine with enhanced engineering capacity to design and build automated instruments to collect more data and new data types. We are rapidly moving into an era when Earth Scientists will need to have the capacity to analyse petabyte (1015 bytes) databases if they are to realistically model and simulate complex earth processes. Although digital geoscientific data sets are becoming increasingly available over the Internet, current Internet technologies only allow for the downloading of data (if the connection is fast enough): integration, processing and analysis then has to take place locally. As data sets get larger and more complex, then large computational resources are required to effectively process these data. Such resources are increasingly only available to the major industry players, which in turn creates a strong bias against the Small to Middle Enterprises, as well as many University researchers. For those that do not have access to large-scale computing resources, analysis of these voluminous data sets has to be compromised by dividing the data set into smaller units, accepting sub-optimal solutions and/or introducing sub-optimal approximations. It is clear that if we are to begin grappling with accurate analysis of large-scale geoscientific data sets to enable sustainable management of our mineral, energy and water resources, then current computational infrastructures are no longer viable.

  • Map showing the Geomorphic Features of the Australian Margin and Island Territories. The features were interpreted from Geoscience Australia's 250 m horizontal bathymetry model and other published data, and include those specified in the International Hydrographic Office definitions.

  • This map shows Western Australian and Commonwealth fishing closures, marine conservation areas and maritime boundaries for the area from Perth north to Shark Bay. It has been produced for the National Oceans Office.

  • This record contains the substantive results of Geoscience Australia marine survey SS08/2005 to the SW margin of Australia. The survey was completed between 28 September and 20 October 2005 using Australia’s national facility research vessel Southern Surveyor. The survey included scientists from Geoscience Australia, CSIRO – Marine and Atmospheric Research, and Victoria Museum. The survey was co‐funded by Geoscience Australia and the Department of the Environment and Heritage (now the Department of the Environment, Water, Heritage and the Arts). The principal aims of the survey were to explore deep‐sea habitats and processes in submarine canyons on the SW margin, and examine the geology of the underlying Mentelle Basin as an assessment for its petroleum potential.

  • Australian Earth Sciences Convention (Canberra July 2010) Abstract The bulk commodities viz iron ore, hydrocarbons, coal and aluminium are Sustaining the wealth of Australia, through their enormous export earnings, job creation and regional development. Why Australia is so blessed in these resources, and how they are being developed will be discussed.

  • From 1995 to 2000 information from the federal and state governments was compiled for Comprehensive Regional Assessments (CRA), which formed the basis for Regional Forest Agreements (RFA) that identified areas for conservation to meet targets agreed by the Commonwealth Government with the United Nations. These 5 CDs were created as part of GA's contribution to the NE Victoria CRA. CD1 contains ArcView Legends and Projects, data coverages, shapefiles, final Exec. Summary and Minerals Technical Reports, and final figures and maps. CD2 contains final reports, metadata, model descriptions, and all associated maps and figures. CD3 contains Landsat, Magnetic and Radiometric images, AcrInfo grids, and unused ArcInfo AMLs and Graphic files that were intended for map creation. CD4 contains original data supplied by custodians, staff versions of data and projects, and various edited versions of covers and shapefiles. CD5 contains integration data used during Directions report analysis.