From 1 - 10 / 60
  • Initial lead isotope ratios from Archean volcanic-hosted massive sulfide (VHMS) and lode gold deposits and neodymium isotope model ages from igneous rocks from the geological provinces that host these deposits identify systematic spatial and temporal patterns, both within and between the provinces. The Abitibi-Wawa Subprovince of the Superior Province is characterized by highly juvenile lead and neodymium. Most other Archean provinces, however, are characterized by more evolved isotopes, although domains within them can be characterized by juvenile isotope ratios. Metal endowment (measured as the quantity of metal contained in geological resources per unit surface area) of VHMS and komatiite-associated nickel sulfide (KANS) deposits is related to the isotopic character, and therefore the tectonic history, of provinces that host these deposits. Provinces with extensive juvenile crust have significantly higher endowment of VHMS deposits, possibly as a consequence of higher heat flow and extension-related faults. Provinces with evolved crust have higher endowment of KANS deposits, possibly because such crust provided either a source of sulfur or a stable substrate for komatiite emplacement. In any case, initial radiogenic isotope ratios can be useful in predicting the endowment of Archean terranes for VHMS and KANS deposits. Limited data suggest similar relationships may hold in younger terranes.

  • The Kalkadoon-Leichhardt Domain of the Mount Isa Inlier has been interpreted to represent the ‘basement’ of the larger inlier, onto which many of the younger, economically prospective sedimentary and volcanic units were deposited. The domain itself is dominated by 1860–1850 Ma granitic to volcanic Kalkadoon Supersuite rocks, but these units are interpreted to have been emplaced/erupted onto older units of the Kurbayia Metamorphic Complex. This study aims to provide insights into a number of geological questions: 1. What is the isotopic character of the pre-1860–1850 Ma rocks? 2. How do these vary laterally within the Kalkadoon-Leichhardt Domain? 3. What is the tectonic/stratigraphic relationship between the 1860–1850 Ma rocks of the Mount Isa Inlier and c. 1850 Ma rocks of the Tennant Creek region and Greater McArthur Basin basement? Detrital zircon U–Pb results indicate the presence of 2500 Ma detritus within the Kurbayia Metamorphic Complex, suggesting that the Kalkadoon-Leichhardt Domain was a sedimentary depocentre in the Paleoproterozoic and potentially had sources such as the Pine Creek Orogen, or, as some authors suggest, potential sources from cratons in northern North America. Existing Hf and Nd-isotopic data suggest that the ‘basement’ units of the Mount Isa Inlier have early Proterozoic model ages (TDM) of 2500–2000 Ma. Oxygen and Hf-isotopic studies on samples from this study will allow us to test these models, and provide further insights into the character and history of these ‘basement’ rocks within the Mount Isa Inlier, and northern Australia more broadly.

  • Inland sulfidic soils have recently formed throughout wetlands of the Murray River floodplain associated with increased salinity and river regulation (Lamontagne et al., 2006). Sulfides have the potential to cause widespread environmental degradation both within sulfidic soils and down stream depending on the amount of carbonate available to neutralise acidity (Dent, 1986). Sulfate reduction is facilitated by organic carbon decomposition, however, little is known about the sources of sedimentary organic carbon and carbonate or the process of sulfide accumulation within inland sulfidic wetlands. This investigation uses stable isotopes from organic carbon (13C and 15N), inorganic sulfur (34S) and carbonate (13C and 18O) to elucidate the sources and cycling of sulfur and carbon within sulfidic soils of the Loveday Disposal Basin.

  • Amino acid racemization (AAR) dating of the eolianite on Lord Howe Island is used to correlate several disparate successions and provides a geochronological framework that ranges from Holocene to Middle Pleistocene time. The reliability of the AAR data is assessed by analysing multiple samples from individual lithostratigraphic units, checking the stratigraphic order of the D/L ratios and the consistency of the relative extents of racemization for a suite of seven amino acids. Three aminozones are defined on the basis of the extent of racemization of amino acids in land snails (Placostylus bivaricosus) and 'whole-rock' eolianite samples. Aminozone A includes Placostylus from modern soil horizons (e.g. mean D/L-leucine ratio of 0.03±0.01) and whole-rock samples from unconsolidated lagoonal and beach deposits (0.10±0.01-0.07±0.03). Aminozone B includes Placostylus (0.45±0.03) and whole-rock samples from beach (0.48±0.01) and dune (0.45±0.02-0.30±0.02) units of the Neds Beach Formation, deposited during OIS 5. The oldest, Aminozone C, comprises Placostylus recovered from paleosols (0.76±0.02) and whole-rock eolianite samples (0.62±0.00) from the Searles Point Formation, which indicate the formation was likely deposited over several Oxygen Isotope Stages (OIS), during and prior to OIS 7. These data support independent lithostratigraphic interpretations and are in broad agreement with U/Th ages of speleothems from the Searles Point Formation and corals from the Neds Beach Formation, and with several TL ages of dune units in both formations. The AAR data reveal that eolianite deposition extends over a significantly longer time interval than previously appreciated and indicate that the deposition of the large dune units is linked to periods of relatively high sea level.

  • In addition to typical seafloor VHMS deposits, the ~3240 Ma Panorama district contains contemporaneous greisen- and vein-hosted Mo-Cu-Zn-Sn occurrences that hosted by the Strelley granite complex, which drove VHMS circulation. High-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by quartz-chlorite±albite assemblages, with lesser low-temperature quartz-sericite±K-feldspar assemblages, typical of VHMS hydrothermal systems. Alteration assemblages associated with granite-hosted greisens and veins, which do not extend into the overlying volcanc pile, include quartz-topaz-muscovite-fluorite and quartz-muscovite(sericite)-chlorite-ankerite. Fluid inclusion and stable isotope data suggest that the greisens formed from high temperature (~590C), high salinity (38-56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high -18O (9.3±0.6-), which are compatible with magmatic fluids evolved from the Strelley granite complex. Fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90-270C), lower salinity (5.0-11.2 wt % NaCl equiv), with lower densities (0.88-1.01 g/cm3) and lower -18O (-0.8±2.6), compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the upper granite complex, were intermediate in temperature and isotopic composition (T = 240-315C; -18O = 4.3±1.5-) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid in the granite complex, along with a lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system, interpreted as a consequence swamping of the system by evolved seawater or density contrasts.

  • <div>This report presents key results from the Upper Darling River Floodplain groundwater study conducted as part of the Exploring for the Future (EFTF) program in north-western New South Wales. The Australian Government funded EFTF program aimed to improve understanding of potential mineral, energy, and groundwater resources in priority areas for each resource.</div><div><br></div><div>The Upper Darling River Floodplain study area is located in semi-arid zone northwest New South Wales is characterised by communities facing critical water shortages and water quality issues, along with ecosystem degradation. As such, there is an imperative to improve our understanding of groundwater systems including the processes of inter-aquifer and groundwater-surface water connectivity. The key interest is in the fresh and saline groundwater systems within alluvium deposited by the Darling River (the Darling alluvium - DA) which comprises sediment sequences from 30 m to 140 m thick beneath the present-day floodplain.</div><div><br></div><div>The study acquired airborne, surface and borehole geophysical data plus hydrochemical data, and compiled geological, hydrometric, and remote sensing datasets. The integration of airborne electromagnetic (AEM) data with supporting datasets including surface and borehole magnetic resonance, borehole induction conductivity and gamma, and hydrochemistry data has allowed unprecedented, high resolution delineation of interpreted low salinity groundwater resources within the alluvium and highly saline aquifers which pose salination risk to both the river and fresher groundwater. Improved delineation of the palaeovalley architecture using AEM, seismic, and borehole datasets has permitted interpretation of the bedrock topography forming the base of the palaeovalley, and which has influenced sediment deposition and the present-day groundwater system pathways and gradients.</div><div><br></div><div>The integrated assessment demonstrates that the alluvial groundwater systems within the study area can be sub-divided on the basis of groundwater system characteristics relevant to water resource availability and management. Broadly, the northern part of the study area has low permeability stratigraphy underlying the river and a generally upward groundwater gradient resulting in limited zone of freshwater ingress into the alluvium around the river. A bedrock high south of Bourke partially restricts groundwater flow and forces saline groundwater from deeper in the alluvium to the surface in the vicinity of the Upper Darling salt interception scheme. From approximately Tilpa to Wilcannia, sufficiently permeable stratigraphy in hydraulic connection with the river and a negligible upward groundwater gradient allows recharge from the river, creating significant freshwater zones around the river within the alluvium.</div><div><br></div><div>Hydrometric and hydrochemical tracer data demonstrate that the alluvial groundwater systems are highly coupled with the rivers. Results support the conceptual understanding that bank-exchange processes and overbank floods associated with higher river flows are the primary recharge mechanism for the lower salinity groundwater within the alluvium. When river levels drop, tracers indicative of groundwater discharge confirm that groundwater contributes significant baseflow to the river. Analysis of groundwater levels and surface water discharge indicates that the previously identified declining trends in river discharge are likely to produce the significant decline in groundwater pressure observed across the unconfined aquifer within the alluvium. Improved quantification and prediction of groundwater-surface water connectivity, water level and flux is considered a high priority for both the Darling River and the wider Murray–Darling Basin. This information will assist in understanding and managing water resource availability in these highly connected systems, and enhance knowledge regarding cultural values and groundwater dependent ecosystems (GDEs).</div><div><br></div><div>This study identifies several aquifers containing groundwater of potentially suitable quality for a range of applications in the south of the study area between Wilcannia and Tilpa and assessed the geological and hydrological processes controlling their distribution and occurrence. Potential risks associated with the use of this groundwater, such as unsustainable extraction, impacts on GDEs, and saline intrusion into aquifers or the river, are outside the scope of this work and have not been quantified.</div>

  • <p>Lu-Hf isotopic analysis of zircon is becoming a common way to characterise the source signature of granite. The data are collected by MC-LA-ICP-MS (multi-collector laser ablation inductively coupled plasma mass spectrometry) as a series of spot analyses on a number of zircons from a single sample. These data are often plotted as spot analyses, and variable significance is attributed to extreme values, and amount of scatter. <p>Lu-Hf data is used to understand the origin of granites, and often a distribution of εHf values is interpreted to derive from heterogeneity in the source or from mixing processes. As with any physical measurement, however, before the data are used to describe geologic processes, care ought to be taken to account for sources of analytical variability. The null hypothesis of any dataset is that there is no difference between measurements that cannot be explained by analytical uncertainty. This null hypothesis must then be disproven using common statistical methods. <p>There are many sources of uncertainty in any analytical method. First is the uncertainty associated with the counting statistics of each analysis. This uncertainty is usually recorded as the SE (standard error) uncertainty attributed to each spot. This uncertainty commonly underestimates the total uncertainty of the population, as it only contains information about the consistency of the measurement within a single analysis. The other source of uncertainty that needs to be characterised is similarity over multiple analyses. This is very difficult to assess in an unknown material, but can be assessed by measuring well-understood reference zircons. <p>Reference materials are characterised by homogeneity in the isotope of interest, and multiple analyses of this material should produce a single statistical population. Where these populations display significant excess scatter, manifested as a MSWD value that far exceeds 1, this means that counting statistics are not the sole source of uncertainty. This can be addressed by expanding the uncertainty on the analyses until the standard zircons form a coherent statistical population. This expansion should then be applied to the unknown zircons to accommodate this ‘spot-to-spot-uncertainty’ or ‘repeatability’ factor. This approach is routinely applied to SHRIMP U-Pb data, and here is similarly applied to Lu-Hf data from granites of the northeast Lachlan Orogen. <p>By applying these uncertainty factors appropriately, it is then possible to assess the homogeneity of unknown materials by calculating weighted means and MSWD factors. The MSWD is a measure of scatter away from a single population (McIntyre et al., 1966; Wendt and Carl, 1991). Where the MSWD is 1, the scatter in data points can be explained solely by analytical means. The higher the MSWD, the less likely it is that the data can be described as a single population. Data which disperses over several εHf units can still be attributed to a single population if the uncertainty envelopes of analyses largely overlap each other. These concepts are illustrated using the data presented in Figure 1. Four out of five of the εHf datasets on zircons from granites form statistically coherent populations (MSWD = 0.69 to 2.4). <p>A high MSWD does not necessarily imply that variation is due to processes occurring during granite formation. Although zircon is a robust mineral, isotopic disturbances are still possible. In the U-Pb system, there is often evidence of post-crystallisation ‘Pb-loss’ which leads to erroneously young apparent U-Pb ages. The Lu-Hf system in zircon is generally thought to be more robust than the U-Pb system, but that does not mean that it is impervious to such effects. In the data set presented in Figure 1, the sample with the most scatter in Lu-Hf (Glenariff Granite, εHf = -0.2 ± 1.5, MSWD = 7.20) is also the sample which had the most rejections in the SHRIMP U-Pb data due to Pb-loss. The subsequent Hf analyses targeted only those grains which fell within the magmatic population (i.e., no observed Pb-loss), but the larger volume excavated by laser Hf analysis means that it is likely that disturbed regions of these grains were incorporated into the measurement. This gives an explanation for the scatter that has nothing to do with geological source characteristics. <p>This line of logic can similarly be applied to all types of multi-spot analyses, including O-isotope analyses. While most of the εHf datasets presented here form coherent populations, the O-isotope data are significantly more scattered (MSWD = 2.8 to 9.4). The analyses on the unknowns scatter much more than on the co-analysed TEMORA2 reference zircon. This implies a source of scatter additional to those described above. In addition to the above described sources of uncertainty, O-isotope analysis by SIMS is also extremely sensitive to topography on the surface of the epoxy into which zircons are mounted (Ickert et al., 2008). O isotopes may also be susceptible to post-formation disturbance and so care should also be taken when interpreting O data, before assigning geological meaning. <p>While it is possible for Lu-Hf and O analyses of zircons in granites to reflect heterogeneous sources and/or complex formation processes, it is important to first exclude other sources of heterogeneity such as analytical sources of uncertainty, and post-formation isotopic disturbances.

  • Vertical geochemical profiling of the marine Toolebuc Formation, Eromanga Basin - implications for shale gas/oil potential The regionally extensive, marine, mid-Cretaceous (Albian) Toolebuc Formation, Eromanga Basin hosts one of Australia's most prolific potential source rocks. However, its general low thermal maturity precludes pervasive petroleum generation, although regions of high heat flow and/or deeper burial may make it attractive for unconventional (shale gas and shale oil) hydrocarbon exploration. Previous studies have provided a good understanding of the geographic distribution of the marine organic matter in the Toolebuc Formation where total organic carbon (TOC) contents range to over 20% with approx. half being of labile carbon and convertible to gas and oil. This study focuses on the vertical profiling, at the decimetre to metre scale, of the organic and inorganic geochemical fingerprints within the Toolebuc Formation with a view to quantify fluctuations in the depositional environment and mode of preservation of the organic matter and how these factors influence hydrocarbon generation thresholds. The Toolebuc Formation from three wells, Julia Creek-2 and Wallimbulla-2 and -3, was sampled over an interval from 172 to 360m depth. The total core length was 27m from which 60 samples were selected. Cores from the underlying Wallumbilla Formation (11 samples over 13m) and the overlying Allaru Mudstone (3 samples) completed the sample set. Bulk geochemical analyses included %TOC, %carbonate, %total S, -15N kerogen, -13C kerogen, -13C carbonate, -18O carbonate, and major, minor and tracer elements and quantitative mineralogy. More detailed organic geochemical analyses involved molecular fossils (saturated and aromatic hydrocarbons, and metalloporphyrins), compound specific carbon isotopes of n-alkanes, pyrolysis-gas chromatography and compositional kinetics. etc.

  • Devonian-Carboniferous granites are widespread in Tasmania. In the east they intrude the Ordovician-Early Devonian quartzwacke turbidites of the Mathinna Supergroup, whereas the western Tasmanian granites intrude a more diverse terrane of predominantly shelf sequences, with depositional ages extending probably back to the Late Mesoproterozoic. The earliest (~400 Ma) I-type granodiorites in the east may be arc-related and pre-date the Tabberabberan Orogeny (~388 Ma), which appears to represent the juxtaposition of the two terranes. Subsequently more felsic and finally strongly fractionated I- and S-type granites were emplaced until ~373 Ma. In western Tasmania, mostly felsic and fractionated I- and S-types granites were emplaced from ~374-351 Ma, possibly in response to back-arc or post-collisional crustal extension