From 1 - 10 / 25
  • <div>The Kati Thanda – Lake Eyre Basin (KT–LEB) covers about 1.2 million square kilometres of outback Australia. Although the basin is sparsely populated and relatively undeveloped it hosts nationally significant environmental and cultural heritage, including unique desert rivers, sweeping arid landscapes, and clusters of major artesian springs. The basin experiences climatic extremes that intermittently cycle between prolonged droughts and massive inland floods, with groundwater resources playing a critical role in supporting the many communities, industries, ecological systems, and thriving First Nations culture of the KT–LEB.</div><div><br></div><div>As part of Geoscience Australia’s National Groundwater Systems Project (in the Exploring for the Future Program) this report brings together contemporary data and information relevant to understanding the regional geology, hydrogeology and groundwater systems of Cenozoic rocks and sediments of the KT–LEB. This work represents the first whole-of-basin assessment into these vitally important shallow groundwater resources, which have previously received far less scientific attention than the deeper groundwater systems of the underlying Eromanga Basin (part of the Great Artesian Basin). The new knowledge and insights about the geology and hydrogeology of the basin generated by this study will benefit the many users of groundwater within the region and will help to improve sustainable management and use of groundwater resources across the KT–LEB.</div><div><br></div>

  • The product consists of 5,291 line kilometres of time-domain airborne electromagnetic (AEM) geophysical data acquired in the Fitzroy River Catchment of the West Kimberley region, the electrical conductivity models derived from the dataset, and the survey operations and processing report. The data were acquired using the heliborne SkyTEM-312 AEM system. A locality diagram for the survey is shown below. The survey was funded by the Government of Western Australia, as part of its Water for Food Initiative, through the Department of Water (WA DoW). The survey was managed by Geoscience Australia as part of a national collaborative framework project agreement with WA DoW. The aim of the survey was to map the electrical properties of the top 200-300 metres of the sub-surface geology and hydrogeology within the study area. Geoscience Australia contracted SkyTEM Australia Pty Ltd to acquire the AEM data using the SkyTEM-312 system in September and October 2015. The data were also processed by SkyTEM Australia Pty Ltd using its in-house processing and inversion techniques. The Kimberley Region in north-west Australia is a priority area for the development of irrigated agriculture. The hydrogeology of the area is poorly understood, hence the primary aim of the AEM survey was to provide geophysical data in support of groundwater investigations. Specific objectives of the AEM survey included mapping the extent of regional Canning Basin aquifers to aid assessment of groundwater resources and sustainable yield estimates for agricultural development; provide AEM data in transects to underpin studies of surface-groundwater interactions (groundwater discharge and recharge potential) associated with the major rivers, and permanent river pools in particular; detect and assess potential groundwater salinity hazards within proposed irrigation areas; and map the seawater intrusion (SWI) interface. Very specific mapping objectives were developed for each sub-area, and the survey was designed with these detailed local objectives in mind. The survey design reflects two scales of investigation: 1. Two areas (Knowsley-Mowanjum and GoGo-Fitzroy Crossing) with higher density flight line spacing (400 m) in areas with advanced plans for development of irrigated agriculture; 2. Irregular grid of regional transects and lines acquired along river tracts reflecting the reconnaissance nature of regional investigations in a frontier hydrogeological area. Much of the area lies underneath cover of sedimentary basins and is a poorly-understood element of Australia¿s geology. The Fitzroy Trough is also host to a number of mineral systems including diamonds and base metal mineralisation, as well as shale gas resources. The survey data should assist with understanding of the basin geology and neotectonics, while lamproite pipes have also been intersected in a number of flight lines. The survey data will also add to the knowledge of the thickness and character of alluvium and regolith cover and will inform future geological mapping in the region. The data will be available from Geoscience Australia¿s web site free of charge. The data release package includes: 1. Point-located electromagnetic line data with associated position, height, orientation, transmitter current, and derived ground elevation data. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey, repeat lines and high altitude lines are included in the dataset. The dataset is split into Parts 1 and 2 based on the differences in the receiver gate times for each part. 2. Point-located magnetic line data with associated position, height, orientation, and derived ground elevation data. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey, repeat lines and high altitude lines are included in the dataset. 3. Point-located line data for conductivity estimates derived by SkyTEM Australia Pty Ltd using its Automated Laterally Constrained Inversion (aLCI) algorithm with associated position, height, orientation, and derived ground elevation data. Data include the conductivity estimate for each of the 30 inversion model layers, the layer elevation, estimated depth of investigation, and data fit residuals. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey and repeat lines are included in the dataset. 4. Gridded data for the derived ground elevations, total magnetic intensity, and the conductivity of the 30 aLCI inversion model layers. The grids are in ER Mapper® binary raster grid format with associated header files. The grids have a cell size of 100 m. For the aLCI inversion layer conductivity grids, there are versions that are masked (set to undefined) below the estimated depth of investigation and unmasked. 5. Graphical multiplots and spatial images derived from the aLCI inversion. The multiplots show the derived aLCI conductivity depth sections and selected data panels for each individual flight line in Portable Network Graphics (PNG) and Portable Document Format (PDF) formats. The spatial images show colour images of the conductivity for each aLCI model layer and are in PNG, PDF and geo-located Tagged Image Format (TIF) files suitable for use in MAPINFO. 6. The survey Operations and Processing Report, which provides the details of the AEM system, logistics, data acquisition, data processing and the aLCI inversion parameters. 7. ESRI shapefiles and KML files of flight lines. Summary Survey Name West Kimberley Airborne EM Survey, WA, 2015 (Water for Food) State Western Australia Sub Region West Kimberley Area 20,314 km2 Line km 5,291 km Survey Completed 17 October 2015 AEM system SkyTEM-312 Processing SkyTEM Australia Pty Ltd

  • <div>The groundwater and surface water systems associated with the Upper Darling River Floodplain (UDF) in arid northwest New South Wales form part of the Murray-Darling Basin drainage system, which hosts 40% of Australia’s agricultural production. Increasing water use demands and a changing regional climate are affecting hydrological systems, and consequently impacting the quality and quantity of water availability to communities, industries and the environment.</div><div>As part of the Australian Government’s Exploring for the Future program, the UDF project is working in collaboration with State partners to collect and integrate new data and information with existing hydrogeological knowledge. The goal is to provide analyses and products that assist water managers to increase water security in the region, with a focus on groundwater resources. </div><div>As part of this project we are assessing the occurrence of, and geological controls on, potable water resources within the Darling Alluvium (DA), which comprises unconsolidated sediments (<140 m thick) associated with the modern and paleo-Darling River. The DA’s relationship to the underlying Eromanga, Surat (Great Artesian Basin) and Murray basins is also important, particularly in the context of potential groundwater sources or sinks, and connection between low and high quality groundwater resources. At least one major fault system is known to influence groundwater flow paths and control groundwater-surface water interaction.</div><div>Data collection across the project area has commenced, with an airborne electromagnetic (AEM) survey already complete, and new geophysical, hydrochemical and hydrodynamic data being acquired. Preliminary interpretation of the new AEM data in conjunction with existing geological and hydrogeological information has already revealed the major paths and geometries of the paleo-Darling River, given important insights into potential fault controls on groundwater flow paths, and shown variation in the thickness, distribution and character of the DA, which has direct implications for groundwater–surface water connectivity.</div><div><br></div>

  • Long-range, active-source airborne electromagnetic (AEM) systems for near-surface imaging fall into two categories: helicopter borne or fixed-wing aircraft borne. A multitude of factors such as flying height, transmitter loop area and current, source waveforms, aerodynamic stability and data stacking times contribute to the geological resolvability of the subsurface. A comprehensive comparison of the relative merits of each system considering all such factors is difficult, but test flights over known subsurface geology with downhole induction logs are extremely useful for resolution studies. Further, given the non-linear nature of the electromagnetic inverse problem, handling transmitter-receiver geometries in fixed-wing aircraft is especially challenging. As a consequence of this nonlinearity, inspecting the closeness of downhole conductivities to deterministic inversion results is not sufficient for studying resolvability. A more comprehensive picture is provided by examining the width of the depth-wise Bayesian posterior conductivity distributions for each kind of system. For this purpose, probabilistic inversions of data must be carried out -- with acquisition over the same geology, survey noise levels must be measured, and the same prior probabilities on conductivity must be used. With both synthetic models as well as real data from over the Menindee calibration range in New South Wales, Australia, we shed new light on the matter of AEM inverse model resolution. Specifically, we use a novel Bayesian inversion scheme which handles fixed-wing geometry attributes as generic nuisance parameters during Markov chain sampling. Our findings have useful implications in AEM system selection, as well as in the design of better deterministic AEM inversion algorithms. <b>Citation:</b> Anandaroop Ray, Yusen Ley-Cooper, Ross C Brodie, Richard Taylor, Neil Symington, Negin F Moghaddam, An information theoretic Bayesian uncertainty analysis of AEM systems over Menindee Lake, Australia, Geophysical Journal International, Volume 235, Issue 2, November 2023, Pages 1888–1911, <a href="https://doi.org/10.1093/gji/ggad337">https://doi.org/10.1093/gji/ggad337</a>

  • <div>This package contains Airborne Electromagnetic (AEM) data from the regional survey flown over the Upper Darling Floodplain in New South Wales (NSW), Australia between March-July 2022. Approximately 25,000 line km of transient EM and magnetic data were acquired. Geoscience Australia (GA) commissioned the survey in collaboration with the New South Wales Department of Planning and Environment (NSW DPE) as part of the Australian Government’s Exploring for the Future (EFTF) program (https://www.ga.gov.au/eftf). The NSW DPE were funding contributors to the AEM data collection. GA managed all aspects of the acquisition, quality control and processing of the AEM data.</div>

  • <div>In June to September 2022 an airborne electromagnetic (AEM) survey was flown over parts of the Curnamona Province, Delamerian Orogen and Darling Region in South Australia, New South Wales and Victoria.&nbsp;Geoscience Australia commissioned the survey in collaboration with the Department of Regional New South Wales as part of the Australian Government’s Exploring for the Future program. A total of 14,509 line kilometres of new data were acquired, of which 3,407 line kilometres were funded by the Department of Regional New South Wales. GA managed all aspects of the acquisition, quality control and processing of the AEM data.</div><div><br></div><div>The survey was flown by Skytem Australia Pty Ltd using its SkyTEM312Fast AEM system. The survey was conducted on east-west lines spaced at 2,500 m and 5,000 m apart.&nbsp;Skytem Australia Pty Ltd also processed the data. This data package includes the acquisition and processing report, the final processed AEM data and the results of the 1D laterally constrained inversion of the data to conductivity-depth estimates that was carried out by the contractor. The data package additionally contains the results and derived products from a 1D inversion carried out by Geoscience Australia with its own inversion software.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>

  • <div>Abstract to present results so far from Upper Darling floodplain EFTF module at Australasian Groundwater Conference (AGC) in Perth</div> This presentation was given at the 2022 Australasian Groundwater Conference 21-23 November (https://www.aig.org.au/events/australasian-groundwater-conference-2022/)

  • The product consists of 8,800 line kilometres of time‐domain airborne electromagnetic (AEM) geophysical data acquired over the far north part of South Australia known as the Musgrave Province. This product release includes: a) the measured AEM point located data, b) electrical conductivity depth images derived from the dataset, and c) the acquisition and processing report. The data were acquired using the airborne SkyTEM312 Dual Moment 275Hz/25Hz electromagnetic and magnetic system, which covered a survey area of ~14,000 km2, which includes the standard 1:250 000 map sheets of SG52-12 (Woodroffe), SG52-16 (Lindsay), SG53-09 (Alberga) and SG53-13 (Everard). The survey lines where oriented N-S and flown at 2km, 500m and 250m line spacing. A locality diagram for the survey is shown in Figure 1. This survey was funded by the Government of South Australia, as part of the Plan for Accelerating Exploration (PACE) Copper Initiative, through the Department of the Premier and Cabinet, (DPC) and the Goyder Institute of Water Research. Geoscience Australia managed the survey as part of a National Collaborative Framework project agreement with SA. The principal objective of this project was to capture a baseline geoscientific dataset to provide further information on the geological context and setting of the area for mineral systems as well as potential for groundwater resources, of the central part of the South Australian Musgrave Province. Geoscience Australia contracted SkyTEM (Australia) Pty. Ltd. to acquire SkyTEM312 electromagnetic data, between September and October 2016. The data were processed and inverted by SkyTEM using the AarhusInv inversion program (Auken et al., 2015) and the Aarhus Workbench Laterally Constrained Inversion (LCI) algorithm (Auken et al. 2005; Auken et al. 2002). The LCI code was run in multi-layer, smooth-model mode. In this mode the layer thicknesses are kept fixed and the data are inverted only for the resistivity of each layer. For this survey a 30 layer model was used. The thickness of the topmost layer was set to 2 m and the depth to the top of the bottommost (half-space) layer was set to 600 m. The layer thicknesses increase logarithmically with depth. The thicknesses and depths to the top of each layer are given in Table 1. The regional AEM survey data can be used to inform the distribution of cover sequences, and at a reconnaissance scale, trends in regolith thickness and variability, variations in bedrock conductivity, and conductivity values of key bedrock (lithology related) conductive units under cover. The data will also assist in assessing groundwater resource potential and the extent of palaeovalley systems known to exist in the Musgrave Province. A considerable area of the survey data has a small amplitude response due to resistive ground. It very soon becomes evident that lack of signal translates to erratic non-monotonic decays, quite opposite to the smooth transitional exponential decays that occur in conductive ground. Some sections of the data have been flown over what appears to be chargeable ground, hence contain what potentially can be identified as an Induced Polarization effect (airborne IP—AIP). For decades these decay sign changes, which characterize AIP, have not been accounted for in conventional AEM data processing and modelling (Viezzoli et al., 2017). Instead they have mostly been regarded as noise, calibration or levelling issues and are dealt with by smoothing, culling or applying DC shifts to the data. Not accounting for these effects is notable on the contractor’s conductivity-depth sections, where data can’t be modelled to fit the data hence large areas of blank-space have been used to substitute the conductivity structure. The selection of the survey area was undertaken through a consultative process involving the CSIRO, GOYDER Institute, Geological Survey of South Australia and the exploration companies currently active in the region (including industry survey partner PepinNini Minerals Ltd). The data will be available from Geoscience Australia’s web site free of charge. It will also be available through the South Australian Government’s SARIG website at https://map.sarig.sa.gov.au. The data will feed into the precompetitive exploration workflow developed and executed by the Geological Survey of South Australia (GSSA) and inform a new suite of value-added products directed at the exploration community.

  • <div>In Australia, wide-spread sedimentary basin and regolith cover presents a key challenge to explorers, environmental managers and decision-makers, as it obscures underlying rocks of interest. To address this, a national coverage of airborne electromagnetics (AEM) with a 20&nbsp;km line-spacing is being acquired. This survey is acquired as part of the Exploring for the Future program and in collaboration with state and territory geological surveys. This survey presents an opportunity for regional geological interpretations on the modelled AEM data, helping constrain the characteristics of the near-surface geology beneath the abundant cover, to a depth of up to ~500&nbsp;m.</div><div> The AEM conductivity sections were used to delineate key chronostratigraphic boundaries, e.g. the bases of geological eras, and provide a first-pass interpretation of the subsurface geology. The interpretation was conducted with a high level of data integration with boreholes, potential fields geophysics, seismic, surface geology maps and solid geology maps. This approach led to the construction of well-informed geological interpretations and provided a platform for ongoing quality assurance and quality control of the interpretations and supporting datasets. These interpretations are delivered across various platforms in multidimensional non-proprietary open formats, and have been formatted for direct upload to Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository of multidisciplinary subsurface depth estimates.</div><div> These interpretations have resulted in significant advancements in our understanding of Australia’s near-surface geoscience, by revealing valuable information about the thickness and composition of the extensive cover, as well as the composition, structure and distribution of underlying rocks. Current interpretation coverage is ~110,000 line kilometres of AEM conductivity sections, or an area &gt;2,000,000&nbsp;km2, similar to the area of Greenland or Saudi Arabia. This ongoing work has led to the production of almost 600,000 depth estimate points, each attributed with interpretation-specific metadata. Three-dimensional line work and over 300,000 points are currently available for visualisation, integration and download through the GA Portal, or for download through GA’s eCat electronic catalogue. </div><div> These interpretations demonstrate the benefits of acquiring broadly-spaced AEM surveys. Interpretations derived from these surveys are important in supporting regional environmental management, resource exploration, hazard mapping, and stratigraphic unit certainty quantification. Delivered as precompetitive data, these interpretations provide users in academia, government and industry with a multidisciplinary tool for a wide range of investigations, and as a basis for further geoscientific studies.</div> Abstract submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • <div> Airborne electromagnetic (AEM) data has been acquired at 20km line spacing across much of the Australian continent and conductivity models generated by inverting these data are freely available. Despite the wide line spacing these data are suitable for imaging the near surface and better understanding groundwater systems. Twenty-kilometre spaced AEM data acquired over the Cooper Creek floodplain using a fixed-wing towed system were inverted using deterministic and probabilistic methods. The Cooper Creek is an anabranching ephemeral river system in arid eastern central Australia. We integrated conductivity data with a range of surface and subsurface data to characterise the hydrogeology of the region and infer groundwater salinity from the shallow alluvial aquifer across a more than 14,000 km2 Cooper Creek floodplain. The conductivity data also revealed several examples of focused recharge through a river channel forming a freshwater lens within the more regional shallow saline groundwater system.</div><div>&nbsp;</div><div>This work demonstrates that regional AEM conductivity data can be a valuable tool for understanding groundwater processes at various scales with implications for how to responsibly manage water resources. This work is especially important in the Australian context where high quality borehole data is typically sparse, but high-quality geophysical and satellite data are often accessible.</div><div> </div> This presentation was given to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)