From 1 - 4 / 4
  • Python Source Code for geophys_utils utilities for accessing netCDF encoded geophysics data

  • This strategy outlines the opportunities for Geoscience Australia to continue to apply first class geoscience to the most important challenges in the future by embracing Digital Science. The pace of change in technology is transforming just about every part of our lives, including the way we work, communicate, access services and do science. Science, in particular, has seen a dramatic increase on digital technology, so is itself becoming digital. Digital Science is a radical transformation of science due to technical and cultural changes which is more open, global, collaborative, creative and closer to society. Digital science is about the interplay among scientific data, scientific computing, platforms and people and is driven by the following trends: ● Science advice is expected to be available on demand ● Scientific questions are becoming increasingly complex. ● Scientific data is growing exponentially. ● Digital technologies have reached unprecedented capabilities. As science is rapidly changing, the way Geoscience Australia operationalises science must therefore also change and continue to evolve for the agency to fulfil its potential: Geoscience Australia needs to embrace digital methods in areas of numeric literacy, scientific computing, programming, data modelling, machine learning and mathematics. In other words science has to embrace quantitative methods for it to be contestable and evidence based.

  • Python Source Code for AGDC project. The AGDC is a system for managing large volumes of time-varying gridded data. It will become a common analytical framework for disparate geoscientific gridded datasets.