NDI Carrara 1
Type of resources
Keywords
Publication year
Topics
-
The recently drilled deep stratigraphic drill hole NDI Carrara 1 penetrates the carbonate formations of the Cambrian Georgina Basin as well as the underlying Proterozoic successions of the Carrara Sub-basin. The Proterozoic section consists predominantly of tight shales, siltstones, and calcareous clastic rocks. This study aims to assess the petrophysical properties of the Proterozoic shales using conventional wireline logs. Gamma ray and neutron-density crossplots were used to calculate shale volume fraction, and neutron-density crossplots were applied to compute the total and effective porosity of non-shale rocks. Total organic carbon (TOC) content was interpreted using artificial neural networks, and was used to derive the volume of organic matter was converted from TOC content. Bulk density logs were corrected by removing the kerogen effect in the organic-rich shales. Matrix and kerogen densities were obtained by correlating the reciprocal of grain density with TOC content. Total shale porosity was calculated from kerogen-corrected density porosity and organic porosity. Effective porosity was estimated by removing the shaliness effect. Water saturation was derived using the Simandoux equation. The Proterozoic Lawn Hill Formation in NDI Carrara 1 exhibits petrophysical properties that indicate a favourable potential for shale gas resources. Herein, we define three informal intervals within the intersected Lawn Hill Formation; the upper Lawn Hill, the Lawn Hill shale, and the lower Lawn Hill. The net shale thickness of the upper Lawn Hill and Lawn Hill shale intervals are 165 m and 149 m, respectively. The increased TOC content and organic porosity of the upper Lawn Hill and Lawn Hill shale implies higher adsorbed gas content potential. The Lawn Hill shale has the highest gas saturation (average of 31.1%) and the highest potential for free gas content, corresponding to the highest methane responses in logged mud gas profiles. This extended Abstract was submitted to/presented at the Australasian Exploration Geoscience Conference (AEGC) 2023, Brisbane (https://2023.aegc.com.au/)
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.
-
<div>NDI Carrara 1 is a deep stratigraphic borehole that was drilled in 2020 under the MinEx CRC’s National Drilling Initiative (NDI) program in collaboration with Geoscience Australia and the Northern Territory Geological Survey. NDI Carrara 1 is the first stratigraphic test of the recently described Carrara Sub-basin, a Proterozoic aged depocentre located in the South Nicholson region of northwest Queensland and the Northern Territory. The borehole was drilled to a total depth of 1751 m and penetrated a succession of Cambrian aged Georgina Basin carbonate and siliciclastic rocks that unconformably overly a thick succession of Proterozoic age siliciclastic and carbonate-rich sediments. Although drilled on the western flank of the Carrara Sub-basin, NDI Carrara 1 did not penetrate to basement. Interpretation of the L210 deep-crustal seismic survey suggests that further Proterozoic sedimentary packages known from the northern Lawn Hill Platform in northwest Queensland are likely to be found underlying the succession intersected in NDI Carrara 1. The borehole was continuously cored from 283 m to total depth, and an extensive suite of wireline logs was acquired. Geoscience Australia and partners have undertaken an extensive analytical program to understand the depositional, structural, and diagenetic history of the sediments intersected in NDI Carrara 1. This program includes a targeted petrophysical study that aims to characterise the physical properties of these Proterozoic rocks through laboratory analysis of core samples, the results of which are summarised in this data release.</div><div><br></div><div>This data release provides data from new X-ray Computerised Tomography (XCT) scanning and gas porosity and permeability testing for 32 samples from NDI Carrara 1. Additional low permeability tests were undertaken on select samples that were identified as being ultra-tight (permeability <1 μD). These tests were performed at the CSIRO Geomechanics and Geophysics Laboratory in Perth, during January to June 2022. The full results as provided by CSIRO to Geoscience Australia are provided as an attachment to this document. </div>
-
NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents the petrology conducted on 50 selected thin sections of NDI Carrara 1 undertaken by Microanalysis Australia (under contract to Geoscience Australia as part of the Exploring for the Future program).
-
Stratigraphic drill hole NDI Carrara 1 was drilled as a collaboration between Geoscience Australia (GA), the Northern Territory Geological Survey (NTGS) and the Mineral Exploration Cooperative Research Centre (MinEx CRC). It reached a total depth of 1751 m in late 2020 and is the first drill hole to intersect the undifferentiated Proterozoic rocks of the Carrara Sub-Basin. It intersected approximately 630 m of Cambrian Georgina Basin sedimentary rocks overlying the ~1100 m of Proterozoic carbonates, black shales and other siliciclastics of the Carrara Sub-Basin succession. The formational assignments of the Georgina Basin succession are preliminary and were assigned in the field. The units intersected comprise the Border Waterhole Formation (~531m to ~630m), which is overlain by the Currant Bush Limestone (~249m to ~531m), which in turn is overlain by the Camooweal Dolostone (0m to ~249m). Of these, only the lower 80% of the Currant Bush Limestone and the entire Border Waterhole Formation were cored. This report presents biostratigraphic results from macrofossil examination of NDI Carrara 1 core samples within the Georgina Basin section.
-
<div>NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Georgina Basin carbonates. </div><div>Geoscience Australia has undertaken a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara 1 as well as undertaking a range of analyses of about 500 physical samples recovered through the entire core. Analyses included geochronology, isotope studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity and petroleum systems investigations.</div><div>Rock-Eval pyrolysis raw data undertaken by Geoscience Australia were reported in Butcher et al. (2021) on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity. Interpretation of the Rock-Eval pyrolysis data concluded that a large portion of rocks within the Proterozoic section displayed unreliable Tmax values due to poorly defined S2 peaks resulting from high thermal maturity and low hydrogen content. In order to obtain more reliable Tmax values, Rock-Eval pyrolysis of selected isolated kerogens, where organic matter is concentrated and mineral matrix effects are removed, were conducted and the resulting data are presented in this report. </div><div><br></div>
-
The Proterozoic succession in the NDI Carrara 1 drill hole, Northern Territory, consists predominantly of tight shales, siltstones, and calcareous clastic rocks. As part of Geoscience Australia’s Exploring for the Future program, this study aims to derive porosity, permeability and gas content from both laboratory testing and well log interpretation from machine learning approaches, to improve the Proterozoic shale gas reservoir characterisation. The Proterozoic Lawn Hill Formation was divided into four chemostratigraphic packages. The middle two packages were further divided into seven internal units according to principal component analysis and self-organising map clustering on well logs and inorganic geochemical properties. Artificial neural networks were then applied to interpret the mineral compositions, porosity and permeability from well logs, density and neutron-density crossplot interpretations. Gas content was estimated from the interpreted porosity, gas saturation, total organic carbon and clay contents. Petrophysical interpretation results are summarised for all chemostratigraphic packages and units. Package 2 (1116–1430.1 m) has the highest potential among the four chemostratigraphic packages. P2U1 (1116–1271 m) and P2U3 (1335.5–1430.1 m) units have the most favourable petrophysical properties for organic-rich shales with the average total gas contents of 1.25 cm3/g and 1.30 cm3/g, geometric mean permeability of 4.79 µD and 17.56 µD, and net shale thickness of 54.4 m and 85.3 m, respectively. P3U4 unit (687.9–697.9 m) has high gas content and permeability, with the net shale thickness of 29.1 m. Besides the organic-rich shales, the tight non-organic-rich siltstone and shale reservoirs in package 1 (below 1430.1 m) have average gas saturation of 14% and geometric mean permeability of 1.31 µD, respectively. Published in The APPEA Journal 2023. <b>Citation:</b> Wang Liuqi, Bailey Adam H. E., Grosjean Emmanuelle, Carson Chris, Carr Lidena K., Butcher Grace, Boreham Christopher J., Dewhurst Dave, Esteban Lionel, Southby Chris, Henson Paul A. (2023) Petrophysical interpretation and reservoir characterisation on Proterozoic shales in National Drilling Initiative Carrara 1, Northern Territory. <i>The APPEA Journal</i><b> 63</b>, 230-246. https://doi.org/10.1071/AJ22049
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a newly discovered Proterozoic depocentre in the South Nicholson region, based on interpretation from new seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1751 m. Geoscience Australia conducted an extensive post-drilling analytical program that generated over 30 datasets which the interested reader can find under the EFTF webpage (under the "Data and publications" drop down menu) at https://www.eftf.ga.gov.au/south-nicholson-national-drilling-initiative This record links to the Exploring for the Future 'borehole completion report' for NDI Carrara 1 and access to all on-site downhole geophysical datasets.
-
NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents SHRIMP U-Pb zircon geochronology on 10 volcaniclastic rocks taken from NDI Carrara 1.
-
Six gas samples were collected from the possum belly (PB) of the shaker assembly during the drilling of NDI Carrara 1. The sample depths ranged from 1187 m to 1360 m and were from organic-rich Proterozoic rock units. The molecular composition and carbon and hydrogen isotope compositions of the individual PB gas components (methane, ethane, propane and carbon dioxide) suggest that the gases were sourced from local, thermally mature, organic-rich shales and siltstones. After taking into account the air and excess nitrogen content in the PB gases, the helium content of the PB gases is low while the molecular hydrogen contents is up to over a 100 times higher than the helium content. Both molecular hydrogen and helium likely have a major radiogenic origin. Based on the results, there is potential for a yet-to-be quantified unconventional hydrocarbon resource in the vicinity of the NDI Carrara 1 well.