From 1 - 4 / 4
  • <div>The Tanami–King Leopold survey was part of a collaborative research project between Geoscience Australia (GA) and the Geological Survey of Western Australia. Gravity data was collected at 5 km wavelength resolution with the purpose to help characterise key undercover geological elements of the region. The project area extends approximately from the Balgo Hills region near the border with the Northern Territory through to Derby in the west. The survey was conducted by Thomson Aviation Pty Ltd with a GT-2A gravimeter and managed by GA. A total of 25,869.36 line km of data were acquired over an area of 58,040 km².</div><div>&nbsp;</div><div><strong>Survey details</strong></div><div>Survey Name: Tanami-King Leopold WA airborne gravity survey 2017</div><div>State/Territory: Western Australia (WA)</div><div>Datasets Acquired: Airborne gravity</div><div> Geoscience Australia Project Number: P1291B</div><div> Acquisition Start Date: June 16, 2017</div><div> Acquisition End Date: August 12, 2017</div><div> Flight line spacing: 2.5 km</div><div> Flight line direction: 180deg / NS</div><div> Tie line spacing: 25km</div><div> Tie line direction: 270 deg / EW</div><div>Total line kilometers: 25,869.36</div><div> Nominal terrain clearance (above ground level): 477 m</div><div> Aircraft type: GippsAero GA-8 Airvan</div><div>Data Acquisition: Thomson Aviation </div><div> Project Management: Geoscience Australia</div><div> Quality Control: CMG Operations Pty Ltd and Geoscience Australia</div><div> Dataset Ownership: GSWA and Geoscience Australia</div><div>&nbsp;</div><div><strong>Files included in this download</strong></div><div>This data package release contains the final survey deliverables received from the contractor Thomson Aviation. Quality control and data processing services were provided by CMG Operations Pty Ltd and peer reviewed by Dr Jack McCubbine (Geoscience Australia).</div><div>&nbsp;</div><div>The horizontal datum and projection for all the data are GDA94 and MGA52, respectively.</div><div>&nbsp;</div><div><strong>1.</strong> <strong><em>Point-located Data / line data</em></strong></div><div>ASCII column XYZ and ASEG-GDF2 format with accompanying description and definition files.</div><div><br></div><div> <strong><em>2.Grids</em></strong> </div><div> </div><div>Datum:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GDA94</div><div>Projection:&nbsp;&nbsp;MGA52</div><div>Grid cell size:&nbsp;500m</div><div>Format: ERMapper (.ers)</div><div>Gravity datum: AAGD07. </div><div>&nbsp;</div><div>There are 24 gridded data supplied in ERMapper (.ers) format. The grid cell size is 500 metres. The gravity datum used is AAGD07. </div><div><br></div><div> <strong>3. Reports</strong> </div><div> • Final survey logistic report delivered to Geoscience Australia by the survey contractor: <em>TNC-TANAMI-FINAL-REPORT.pdf</em></div><div>• QC report from the peer reviewer of the data package: <em>Tanami King Leopold QC report.pdf</em></div><div> </div><div>The data from this Tanami King Leopold survey can also be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71200.&nbsp;</div><div><br></div>

  • <p>Various gridded images were produced from the NTGS Tanami Region Airborne Magnetic and Radiometric Survey dataset and simultaneously merged into a single grid file. The final grid retains all of the information from the input data and is levelled to the national map compilations produced by Geoscience Australia. <p>The following merged grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• NASVD-filtered potassium concentration grid (%). <p>• NASVD-filtered thorium concentration grid (ppm). <p>• NASVD-filtered uranium concentration grid (ppm).

  • <div>The Northwest Northern Territory Seismic Survey (NW NT Seismic Survey) was acquired as part of the Australian Government's Exploring for the Future (EFTF) program, conducted from 5 August to 20 September 2023. This ambitious project is a collaboration between Geoscience Australia and the Northern Territory Geological Survey, aimed to systematically map the subsurface geology of a significant yet largely unexplored region of Australia. Covering an extensive area that includes the Birrindudu Basin, Kalkarindji Suite, Tanami, and Wolfe Basin, the survey successfully acquired about 846 kilometers of high-resolution seismic data across four seismic transects, specifically designated as 23GA-NT1 (54.5 km and 184.5 km in two separate sections), 23GA-NT2 (112 km), 23GA-NT3 (221.46 km), and 23GA-NT4 (274.2 km).</div><div><br></div><div>This seismic campaign is part of a strategic effort to illuminate the geological framework and evaluate the resource potential within these regions, which are considered highly prospective for minerals, geoenergy, geological storage and groundwater resources. By deploying advanced seismic acquisition technologies to capture detailed images of the Earth's crust, this survey provides foundational data for identifying the region's geological features and resource potential, such as basin geometry and fault systems. The data derived from this survey are expected to play a pivotal role in guiding future exploration activities, attracting investment to the region, and ultimately contributing to the sustainable development of Australia's natural resources.</div><div><br></div><div>The project underscores the commitment of the Australian Government and its partners to enhance the geoscientific understanding of the continent's frontier regions. The findings from the NW NT Seismic Survey will advance our knowledge of Australia's geology and unlock new opportunities for exploration and economic development in the northwest Northern Territory. Through the dissemination of precompetitive geoscience data, the EFTF program continues to foster innovation and collaboration across the exploration sector, ensuring that Australia remains at the forefront of global efforts to secure a sustainable and prosperous future.</div><div><br></div><div><strong>Raw data for this survey are available on request from clientservices@ga.gov.au - Quote eCat#149287</strong></div>

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia (in collaboration with the Northern Territory Geological Survey) acquired around 700 line-kms of deep crustal reflection seismic data across northwest Northern Territory encompassing not only the frontier Birrindudu Basin but adjacent highly prospective regions, such as the Tanami. This ecat record releases the final survey route shapefiles, noting that some segments were not acquired due to site access restrictions. Seismic field data will be published in the near future release following completion of in-house QA/QC protocols