Simpson Basin
Type of resources
Keywords
Publication year
Topics
-
<div>This data package provides depth and isochore maps generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included.</div><div><br></div><div>The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf.</div><div><br></div><div>The depth and isochore maps are products of depth conversion and spatial mapping seismic interpretations by Szczepaniak et al. (2023) and Bradshaw et al. (2023) which interpreted 15 regional surfaces. These surfaces represent the top of play intervals being assessed for their energy resource potential (Figure 1). These seismic datasets were completed by play interval well tops by Bradshaw et al. (in prep), gross depositional environment maps, zero edge maps by Bradshaw et al. (in prep), geological outcrop data as well as additional borehole data from Geoscience Australia’s stratigraphic units database.</div><div><br></div><div>Depth and isochore mapping were undertaken in two to interactive phases; </div><div><br></div><div>1. A Model Framework Construction Phase – In this initial phase, the seismic interpretation was depth converted and then gridded with other regional datasets. </div><div><br></div><div>2. A Model Refinement and QC Phase – This phase focused on refining the model and ensuring quality control. Isochores were generated from the depth maps created in the previous phase. Smoothing and trend modelling techniques were then applied to the isochore to provide additional geological control data in areas with limited information and to remove erroneous gridding artefacts. </div><div><br></div><div>The final depth maps were derived from isochores, constructing surfaces both upward and downward from the CU10_Cadna-owie surface, identified as the most data-constrained surface within the project area. This process, utilizing isochores for depth map generation, honours all the available well and zero edge data while also conforming to the original seismic interpretation.</div><div><br></div><div>This data package includes the following datasets: </div><div><br></div><div>1) Depth maps, grids and point datasets measured in meters below Australian Height Datum (AHD, for 15 regional surfaces (Appendix A). </div><div>2) Isochore maps, grids and point datasets measured in meters, representing 14 surfaces/play internals (Appendix B).</div><div> </div><div>These depth and isochore maps are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and western Eromanga basins, and will help to support future updates of 3D geological and hydrogeological models for the Great Artesian Basin by Geoscience Australia.</div><div><br></div>
-
This data package provides seismic interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included. The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on the recently published interpretations by Szczepaniak et al. (2023) by providing updated interpretations in the AFER Project area for the Top Cadna-owie (CC10) and Top Pre-Permian (ZU) horizons, as well as interpretations for 13 other horizons that define the tops of play intervals being assessed for their energy resource potential (Figure 1). Seismic interpretations for the AFER Project are constrained by play interval tops picked on well logs that have been tied to the seismic profiles using time-depth data from well completion reports. The Pedirka and Western Eromanga basins are underexplored and contain relatively sparse seismic and petroleum well data. The AFER Project has interpreted play interval tops in 41 wells, 12 seismic horizons (Top Cadna-owie and underlying horizons) on 238 seismic lines (9,340 line kilometres), and all 15 horizons on 77 recently reprocessed seismic lines (3,370 line kilometres; Figure 2). Note that it has only been possible to interpret the Top Mackunda-Winton, Top Toolebuc-Allaru and Top Wallumbilla horizons on the reprocessed seismic lines as these are the only data that provide sufficient resolution in the shallow stratigraphic section to confidently interpret seismic horizons above the Top Cadna-owie seismic marker. The seismic interpretations are provided as point data files for 15 horizons, and have been used to constrain the zero edges for gross-depositional environment maps in Bradshaw et al. (2023) and to produce depth-structure and isochore maps for each of the 14 play intervals in Iwanec et al. (2023). The data package includes the following datasets: 1) Seismic interpretation point file data in two-way-time for up to 15 horizons using newly reprocessed seismic data and a selection of publicly available seismic lines (Appendix A). 2) Geographical layers for the seismic lines used to interpret the top Cadna-owie and underlying horizons (Cadnaowie_to_TopPrePermian_Interpretation.shp), and the set of reprocessed lines used to interpret all 15 seismic horizons (All_Horizons_Interpretation.shp; Appendix B). These seismic interpretations are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and Western Eromanga basins.
-
<div>This document provides metadata for the gross depositional environment (GDE) interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. </div><div>The AFER projects is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. </div><div>The GDE data sets provide high level classifications of interpreted environments where sediments were deposited within each defined play interval in the Pedirka, Simpson and Western Eromanga basins. Twelve gross depositional environments have been interpreted and mapped in the study (Table 1). A total of 14 play intervals have been defined for the Pedirka, Simpson and Western Eromanga basins by Bradshaw et al. (2022, in press), which represent the main chronostratigraphic units separated by unconformities or flooding surfaces generated during major tectonic or global sea level events (Figure 1). These play intervals define regionally significant reservoirs for hydrocarbon accumulations or CO2 geological storage intervals, and often also include an associated intraformational or regional seal. </div><div>GDE interpretations are a key data set for play-based resources assessments in helping to constrain reservoir presence. The GDE maps also provide zero edges showing the interpreted maximum extent of each play interval, which is essential information for play-based resource assessments, and for constructing accurate depth and thickness grids. </div><div>GDE interpretations for the AFER Project are based on integrated interpretations of well log and seismic data, together with any supporting palynological data. Some play intervals also have surface exposures within the study area which can provide additional published paleo-environmental data. The Pedirka, Simpson and Western Eromanga basins are underexplored and contain a relatively sparse interpreted data set of 42 wells and 233 seismic lines (Figure 2). Well and outcrop data provide the primary controls on paleo-environment interpretations, while seismic interpretations constrain the interpreted zero edges for each play interval. The sparse nature of seismic and well data in the study area means there is some uncertainty in the extents of the mapped GDE’s. </div><div>The data package includes the following datasets: </div><div>Play interval tops for each of the 42 wells interpreted – provided as an ‘xlsx’ file. </div><div>A point file (AFER_Wells_GDE) capturing the GDE interpretation for each of the 14 play intervals in each of the 42 wells – provided as both a shapefile and within the AFER_GDE_Maps geodatabase. </div><div>Gross depositional environment maps for each of the 14 play intervals (note that separate GDE maps have been generated for the Namur Sandstone and Murta Formation within the Namur-Murta play interval, and for the Adori Sandstone and Westbourne Formation within the Adori-Westbourne play interval) – provided as both shapefiles and within the AFER_GDE_Maps geodatabase. </div><div> </div><div>These GDE data sets are being used to support the AFER Project’s play-based energy resource assessments in the Western Eromanga, Pedirka and Simpson basins. </div><div><br></div>
-
<div>Geoscience Australia and CSIRO have collaborated, under the Exploring for the Future program, to investigate whether water-saturated residual oil zones (ROZs), sometimes associated with conventional Australian hydrocarbon plays, could provide a CO2 storage resource and enhance the storage capacity of depleted fields. This product is part of a larger project that includes, among others, a reservoir modelling component. </div><div>This report focuses on our petrophysical module of work that investigated the occurrence and character of ROZs in onshore Australian basins. Our findings demonstrate that ROZs occur in Australia’s hydrocarbon-rich regions, particularly in the Cooper-Eromanga Basin. ROZs with more than 10% residual oil saturation are uncommon, likely due to small original oil columns and lower residual saturations retained in sandstone reservoirs than in classic, carbonate-hosted North American ROZs. Extensive, reservoir-quality rock is found below the deepest occurring conventional oil in many of the fields in the Eromanga Basin, potentially offering significant CO2 storage capacity. </div><div>For more information about this project and to access the related studies and products, see: https://www.eftf.ga.gov.au/carbon-co2-storage-residual-oil-zones. </div><div><br></div>
-
Geoscience Australia commissioned reprocessing of selected legacy 2D seismic data in the Pedirka-Simpson Basin in South Australia-Northern Territory as part of the Exploring for the Future (EFTF) program. 34 Legacy 2D seismic lines from the Pedirka Basin were reprocessed between May 2021 and January 2022 (phase 1). An additional 54 legacy 2D seismic lines (34 lines from Pedirka Basin, South Australia and 20 lines from Simpson Basin, Northern Territory) were reprocessed between November 2021 and June 2022 (phase 2). Geofizyka Toruń S.A. based in Poland carried out the data processing and Geoscience Australia with the help of an external contractor undertook the quality control of the data processing. The seismic data release package contains reprocessed seismic data acquired between 1974 and 2008. In total, the package contains approximately 3,806.9 km of industry 2D reflection seismic data. The seismic surveys include the Beal Hill, 1974; Pilan Hill, 1976; Koomarinna, 1980; Christmas Creek, 1982; Hogarth, 1984; Morphett, 1984; Colson 2D, 1985; Etingimbra, 1985; Fletcher, 1986; Anacoora, 1987; Mitchell, 1987; Bejah, 1987; Simpson Desert, 1979, 1984, 1986, 1987; Forrest, 1988; Eringa Trough, 1994; Amadeus-Pedirka, 2008 and covers areas within the Amadeus Basin, Simpson Basin, Pedirka Basin, Warburton Basin and Cooper Basin in South Australia and Northern Territory. The objective of the seismic reprocessing was to produce a processed 2D land seismic reflection dataset using the latest processing techniques to improve resolution and data quality over legacy processing. In particular, the purpose of the reprocessing was to image the structure and stratigraphic architecture of the Neoproterozoic to Late Palaeozoic Amadeus Basin, Triassic Simpson Basin, Cambrian–Devonian Warburton Basin, Permian–Triassic Pedirka Basin and Cooper Basin. All vintages were processed to DMO stack, Pre-stack Time Migration and Post-Stack Time Migration. <b>Data is available on request from clientservices@ga.gov.au - Quote eCat# 146309</b>
-
<div>The Pedirka, Simpson and western Eromanga basins in central Australia have undergone a chequered exploration history which has seen a total of only 42 wells drilled across a study area of ~210,000km2. Exploration initially focused on conventional hydrocarbons from the 1950s-1980s, before shifting towards coal seam gas (CSG) opportunities in the mid-2000s. Active petroleum systems have been proven in the region by a non-commercial oil discovery at Poolowanna 1 in 1977, and by several wells that showed evidence of residual oil columns. CSG exploration wells have confirmed the presence of thick, marginally mature coal intervals on the flanks of the basins, but are yet to evaluate the deeper troughs.</div><div>Geoscience Australia, the Northern Territory Geological Survey and the South Australian Department for Energy and Mining have been collaborating on the Australia’s Future Energy Resources project under the Australian government funded Exploring for the Future Program to undertake an assessment of the resource potential for conventional and unconventional hydrocarbons, and the geological carbon and storage (GCS) potential of the greater Pedirka region. </div><div>The project applied a play-based exploration approach to qualitatively assess the resource potential of the region. The Carboniferous to Cretaceous stratigraphic interval was divided into 14 plays which were evaluated for the presence of sediment-hosted energy resources through post-drill analysis, gross depositional environment mapping and common risk segment mapping. The analysis identified energy resources and GCS potential across multiple plays and locations within the study area. These results demonstrate, that while the region is underexplored, it should not be overlooked by future exploration activities.</div> Published in The APPEA Journal 2023. <b>Citation:</b> Iwanec Jeremy, Strong Paul, Bernecker Tom (2023) Underexplored but not forgotten: assessing the energy resources potential of the greater Pedirka Basin region through play-based mapping. <i>The APPEA Journal</i><b> 63</b>, S251-S256. https://doi.org/10.1071/AJ22150