From 1 - 5 / 5
  • The high frequency (10 min) and resolution (~2km) of Himawari-8 data provides an enormous opportunity for the monitoring and investigation of highly dynamic oceanographic phenomena. This presentation aims to demonstrate the value of himawari-8 SST data for studies of the Bonney Coast upwelling, East Australian Current (EAC) and Madden-Julian Oscillation (MJO) diurnal SST (dSST) variations. During the 2016–17 summer, we identified three distinct upwelling events along the Bonney Coast. Each event surpassed its predecessor in area of influence, minimum temperature and duration. The EAC’s mapped between July 2015 and Sept 2017 showed clear seasonal and intra-seasonal variations. During summer, the EAC and its extension frequently encroached into the coastal areas of northern NSW and eastern Tasmania. A composite analysis based on MJO phases during the summer seasons of 2015–16 and 2016–17 showed that the dSST typically peaked during phases 2 and 3 off the northwest shelf, prior to the onset of the active phases of MJO (phase 4). The analysis indicated that dSST is negatively correlated with the surface wind speed but positively correlated with short-wave latent heat flux. In future, these monitoring and analytical capabilities can be effectively implemented in Geoscience Australia’s Digital Earth Australia platform. Abstract submitted/presented to 2019 Australian Marine science Association AMSA Conference (https://www.amsa.asn.au/2019-fremantle)

  • <p>This dataset measures the mean decadal warming rates of the sea surface temperature (SST) in 58 Australian Marine Parks (with the exception of the Heard Island and McDonald Islands Marine Park) over the past 25 years (1992 to 2016). They are derived from the Sea Surface Temperature Atlas of the Australian Regional Seas (SSTAARS). The field of “trend_d” represents the linear SST trend for March 1992 to December 2016. The unit of the warming rates is Celsius degree/per decade. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>The dataset measures the long-term seasonal variations of the sea surface temperature (SST) of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly SST images between July 2002 and December 2017 are used to calculate the standard deviations of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The unit of the dataset is Celsius degree. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>This dataset measures the overall warming rates of the sea surface temperature (SST) in 58 Australian Marine Parks (except the Heard Island and McDonald Islands Marine Park) over the past 15 years (2003 to 2017). They are derived from the monthly MODIS (aqua) SST images. The fields of "slope_y" and "slope_m" represent the annual and monthly SST warming rates, respectively. The units of the warming rates are Celsius degree/per annual and Celsius degree/per month. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>The dataset measures the long-term seasonal means of the sea surface temperature (SST) of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly SST images between July 2002 and December 2017 are used to calculate the means of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The unit of the dataset is Celsius degree. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.