From 1 - 8 / 8
  • The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Offshore Energy Systems Section. This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. As part of this program, molecular and isotopic analyses were undertaken by Geoscience Australia on gas samples from the well Dorado 1 and the raw data from these analyses are released in this report.

  • Geoscience Australia currently uses two commercial petroleum system modelling software packages, PetroMod https://www.software.slb.com/products/petromod and Zetaware http://www.zetaware.com, to undertake burial and thermal history modelling on wells in Australian sedimentary basins. From the integration of geological (age-based sedimentary packages, uplift and erosional events), petrophysical (porosity, permeability, and thermal conductivity) and thermal (downhole temperature, heat flow, vitrinite reflectance, and Tmax) input data, to name the most significant, a best-fit model of the time-temperature history is generated. Since the transformation of sedimentary organic matter (kerogen) into petroleum (oil and gas) is a chemical reaction, it is governed by chemical kinetics i.e. time and temperature (in the geological setting, pressure is of secondary importance). Thus, the use of chemical kinetics associated with a formation-specific, immature potential source rock (where available) from the basin of interest is considered a better practical approach rather than relying on software kinetic defaults, which are generally based on the chemical kinetics determined experimentally on Northern Hemisphere organic matter types. As part of the Offshore Energy Systems program hydrocarbons from the Lower Cretaceous Eumeralla Formation were selected where available from onshore wells; compositional kinetics (1-, 2-, 4- and 14-component (phase) kinetics) were undertaken by GeoS4, Germany. The phase kinetics approach is outlined in Appendix 1. This report provides the compositional kinetics for potential source rocks from the Lower Cretaceous Otway Group, Otway Basin, Australia. The kinetic data were used in the offshore petroleum system modelling reported in Schenk et al. (2021).

  • During 2021–2024 Geoscience Australia conducted regional seismic mapping across the offshore Otway Basin that extended into the frontier deep-water region. This work was part of a broader pre-competitive study undertaken in support of petroleum exploration. Seismic horizons and faults were interpreted on three regional data sets, including: over 18 000 line-km of new and reprocessed data compiled for the 2020 offshore Otway Basin seismic program; over 40 000 line-km of legacy 2D seismic data; and the Otway 3D Megamerge dataset. This digital dataset (publication date 9 September 2024) updates and replaces a previously released dataset (publication date 16 May 2022). This updated dataset includes 8 surface grids and 11 isochron grids generated from the following seismic horizons (in ascending stratigraphic order); MOHO (Mohorovičić discontinuity), TLLCC (top laminated lower continental crust), Base (base Crayfish Supersequence), EC2 (base Eumeralla Supersequence), LC1 (base Shipwreck Supersequence), LC1.2 (base LC1.2 Sequence), LC2 (base Sherbrook Supersequence), and T1 (base Wangerrip Supersequence). Fault polygons created for all surfaces (except for MOHO, TLLCC, and LC1.2) are also included in the dataset. Maps generated from the dataset depict deep-water Cretaceous depocentres, and trends in crustal thinning and rifting during the Cretaceous. This revised dataset has underpinned updates to regional structural elements, including a revision of the boundary between the Otway and Sorell basins.

  • <div>The Roebuck Basin on Australia’s offshore north-western margin is the focus of regional energy exploration activity. Drilling in the Roebuck Basin resulted in oil and gas discoveries at Phoenix South&nbsp;1 (2014), Roc&nbsp;1 (2015–2016) and Dorado&nbsp;1 (2018) in the Bedout Sub-basin (Figure 1‑2) and demonstrated the presence of a petroleum system in Lower Triassic strata. These discoveries have been evaluated for development and production with infill drilling at Roc&nbsp;2 (2016), Phoenix South&nbsp;2 (2016), Phoenix South&nbsp;3 (2018), Dorado&nbsp;2 (2019), and Dorado&nbsp;3 (2019). Recent drilling by Santos (2022) has resulted in the discovery of oil at Pavo&nbsp;1 (2022) and hydrocarbon shows at Apus&nbsp;1 (2022).</div><div><br></div><div>To complement this industry work, Geoscience Australia’s Offshore Energy Systems program produces pre-competitive information to assist with the evaluation of the energy and resource potential of the central North West Shelf, including both hydrogen and helium resources, and to attract exploration investment to Australia. As part of this program, determination of the molecular and noble gas isotopic composition of natural gases from selected petroleum wells in the Roebuck Basin were undertaken by Smart Gas Sciences, under contract to Geoscience Australia, with results from these analyses being released in this report. This report provides additional gas data to determine the sources of natural gases in the Roebuck Basin and build on previously established gas-gas correlations. Noble gas isotopic data can be used in conjunction with carbon and hydrogen isotopic data to determine the origin of both inorganic and organic (hydrocarbon) gases. This information can be used in future geological programs to determine the source and distribution of hydrogen and helium in natural gases and support acreage releases by the Australian Government.</div><div><br></div>

  • <b>Organic Geochemistry (ORGCHEM) Schema. Australian Source Rock and Fluid Atlas</b> The databases tables held within Geoscience Australia's Oracle Organic Geochemistry (ORGCHEM) Schema, together with other supporting Oracle databases (e.g., Borehole database (BOREHOLE), Australian Stratigraphic Units Database (ASUD), and the Reservoir, Facies and Shows (RESFACS) database), underpin the Australian Source Rock and Fluid Atlas web services and publications. These products provide information in an Australia-wide geological context on organic geochemistry, organic petrology and stable isotope data related primarily to sedimentary rocks and energy (petroleum and hydrogen) sample-based datasets used for the discovery and evaluation of sediment-hosted resources. The sample data provide the spatial distribution of source rocks and their derived petroleum fluids (natural gas and crude oil) taken from boreholes and field sites in onshore and offshore Australian provinces. Sample depth, stratigraphy, analytical methods, and other relevant metadata are also supplied with the analytical results. Sedimentary rocks that contain organic matter are referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. The data in the ORGCHEM schema are produced by a wide range of destructive analytical techniques conducted on samples submitted by industry under legislative requirements, as well as on samples collected by research projects undertaken by Geoscience Australia, state and territory geological organisations and scientific institutions including the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and universities. Data entered into the database tables are commonly sourced from both the basic and interpretive volumes of well completion reports (WCR) provided by the petroleum well operator to either the state and territory governments or, for offshore wells, to the Commonwealth Government under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGGSA) 2006 and previous Petroleum (submerged Lands) Act (PSLA) 1967. Data are also sourced from analyses conducted by Geoscience Australia’s laboratory and its predecessor organisations, the Australian Geological Survey Organisation (AGSO) and the Bureau of Mineral Resources (BMR). Other open file data from company announcements and reports, scientific publications and university theses are captured. The ORGCHEM database was created in 1990 by the BMR in response to industry requests for organic geochemistry data, featuring pyrolysis, vitrinite reflectance and carbon isotopic data (Boreham, 1990). Funding from the Australian Petroleum Cooperative Research Centre (1991–2003) enabled the organic geochemical data to be made publicly available at no cost via the petroleum wells web page from 2002 and included BOREHOLE, ORGCHEM and the Reservoir, Facies and Shows (RESFACS) databases. Investment by the Australian Government in Geoscience Australia’s Exploring for the Future (EFTF) program facilitated technological upgrades and established the current web services (Edwards et al., 2020). The extensive scope of the ORGCHEM schema has led to the development of numerous database tables and web services tailored to visualise the various datasets related to sedimentary rocks, in particular source rocks, crude oils and natural gases within the petroleum systems framework. These web services offer pathways to access the wealth of information contained within the ORGCHEM schema. Web services that facilitate the characterisation of source rocks (and kerogen) comprise data generated from programmed pyrolysis (e.g., Hawk, Rock-Eval, Source Rock Analyser), pyrolysis-gas chromatography (Py-GC) and kinetics analyses, and organic petrological studies (e.g., quantitation of maceral groups and organoclasts, vitrinite reflectance measurements) using reflected light microscopy. Collectively, these data are used to establish the occurrence of source rocks and the post-burial thermal history of sedimentary basins to evaluate the potential for hydrocarbon generation. Other web services provide data to characterise source rock extracts (i.e., solvent extracted organic matter), fluid inclusions and petroleum (e.g., natural gas, crude oil, bitumen) through the reporting of their bulk properties (e.g., API gravity, elemental composition) and molecular composition using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Also reported are the stable isotope ratios of carbon, hydrogen, nitrogen, oxygen and sulfur using gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and noble gas isotope abundances using ultimate high-resolution variable multicollection mass spectrometry. The stable isotopes of carbon, oxygen and strontium are also reported for sedimentary rocks containing carbonate either within the mineral matrix or in cements. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids, which comprise two key elements of petroleum systems analysis. Understanding a fluid’s physical properties and molecular composition are prerequisites for field development. The composition of petroleum determines its economic value and hence why the concentration of hydrocarbons (methane, wet gases, light and heavy oil) and hydrogen, helium and argon are important relative to those of nitrogen, carbon dioxide and hydrogen sulfide for gases, and heterocyclic compounds (nitrogen, oxygen or sulfur) found in the asphaltene, resin and polar fractions of crude oils. The web services and tools in the Geoscience Australia Data Discovery Portal (https://portal.ga.gov.au/), and specifically in the Source Rock and Fluid Atlas Persona (https://portal.ga.gov.au/persona/sra), allow the users to search, filter and select data based on various criteria, such as basin, formation, sample type, analysis type, and specific geochemical parameters. The web map services (WMS) and web feature services (WFS) enable the user to download data in a variety of formats (csv, Json, kml and shape file). The Source Rock and Fluid Atlas supports national resource assessments. The focus of the atlas is on the exploration and development of energy resources (i.e., petroleum and hydrogen) and the evaluation of resource commodities (i.e., helium and graphite). Some data held in the ORGCHEM tables are used for enhanced oil recovery and carbon capture, storage and utilisation projects. The objective of the atlas is to empower people to deliver Earth science excellence through data and digital capability. It benefits users who are interested in the exploration and development of Australia's energy resources by: • Providing a comprehensive and reliable source of information on the organic geochemistry of Australian source rocks • Enhancing the understanding of the spatial distribution, quality, and maturity of petroleum source rocks. • Facilitating the mapping of total petroleum and hydrogen systems and the assessment of the petroleum and hydrogen resource potential and prospectivity of Australian basins. • Facilitating the mapping of gases (e.g., methane, helium, carbon dioxide) within the geosphere as part of the transition to clean energy. • Enabling the integration and comparison of data from diverse sources and various acquisition methods, such as geological, geochemical, geophysical and geospatial data. • Providing data for integration into enhanced oil recovery and carbon capture, storage and utilisation projects. • Improving the accessibility and usability of data through user-friendly and interactive web-based interfaces. • Promoting the dissemination and sharing of data among Government, industry and community stakeholders. <b>References</b> Australian Petroleum Cooperative Research Centre (APCRC) 1991-2003. Australian Petroleum CRC (1991 - 2003), viewed 6 May 2024, https://www.eoas.info/bib/ASBS00862.htm and https://www.eoas.info/biogs/A001918b.htm#pub-resources Boreham, C. 1990. ORGCHEM Organic geochemical database. BMR Research Newsletter 13. Record 13:10-10. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/90326 Edwards, D.S., MacFarlane, S., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S.E., Ray, J., Raymond, O. 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/133751. <b>Citation</b> Edwards, D., Buckler, T. 2024. Organic Geochemistry (ORGCHEM) Schema. Australian Source Rock and Fluid Atlas. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/149422

  • <div>A regional hydrocarbon prospectivity assessment has been undertaken of the offshore Otway Basin by the Offshore Energy Systems Section. This program was designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the offshore Otway Basin and attract exploration investment to Australia. The inboard part of the basin is an established hydrocarbon province with onshore and shallow-water offshore discoveries, whereas the outboard deep-water region, where water depths range from 500 to 6300&nbsp;m, is comparatively underexplored and considered a frontier area.</div><div><br></div><div>As part of this program, molecular and noble gas isotopic analyses were undertaken by Smart Gas Sciences, under contract to Geoscience Australia on available gas samples from the Waarre Formation in the Shipwreck Trough in the offshore eastern Otway Basin, with data from these analyses being released in this report. This report provides additional compositional information for gases in the Waarre Formation reservoirs and builds on previously established gas-gas correlations and gas-oil correlations. Noble gas isotopic data can be used in conjunction with carbon and hydrogen isotopic data to determine the origin of both inorganic and organic (hydrocarbon) gases. This information can be used in future geological programs to determine the source and distribution of hydrogen and helium in natural gases and support acreage releases by the Australian Government.</div><div><br></div><div><br></div>

  • <div>The noble gas database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for molecular and noble gas isotopic analyses on natural gases sampled from boreholes and fluid inclusion gases from rocks sampled in boreholes and field sites. Data includes the borehole or field site location, sample depths, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular and noble gas isotopic compositions for the natural gas samples. The molecular data are presented in mole percent (mol%) and cubic centimetres (at Standard Pressure and Temperature) per cubic centimetre (ccSTP/cc). The noble gas isotopic values that can be measured are; Helium (He, <sup>3</sup>He, <sup>4</sup>He), Neon (Ne, <sup>20</sup>Ne, <sup>21</sup>Ne, <sup>22</sup>Ne), Argon (Ar, <sup>36</sup>Ar, <sup>38</sup>Ar, <sup>40</sup>Ar), Krypton (Kr, <sup>78</sup>Kr, <sup>80</sup>Kr, <sup>82<</sup>Kr, <sup>83</sup>Kr, <sup>84</sup>Kr, <sup>86</sup>Kr) and Xenon (Xe, <sup>124</sup>Xe, <sup>126</sup>Xe, <sup>128</sup>Xe, <sup>129</sup>Xe, <sup>130</sup>Xe, <sup>131</sup>Xe, <sup>132</sup>Xe, <sup>134</sup>Xe, <sup>136</sup>Xe) which are presented in cubic micrometres per cubic centimetre (mcc/cc), cubic nanometres per cubic centimetre (ncc/cc) and cubic picometres per cubic centimetre (pcc/cc). Acquisition of the molecular compounds are by gas chromatography (GC) and the isotopic ratios by mass spectrometry (MS). Compound concentrations that are below the detection limit (BDL) are reported as the value -99999.</div><div><br></div><div>These data provide source information about individual compounds in natural gases and can elucidate fluid migration pathways, irrespective of microbial activity, chemical reactions and changes in oxygen fugacity, which are useful in basin analysis with derived information being used to support Australian exploration for energy resources and helium. These data are collated from Geoscience Australia records and well completion reports. The noble gas data for natural gases and fluid inclusion gases are delivered in the Noble Gas Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div><div><br></div><div><br></div>

  • <div>The Canning Basin is a prospective hydrocarbon frontier basin and is unusual for having limited offshore seismic and well data in comparison with its onshore extent. In this study, seismic mapping was conducted to better resolve the continuity of 13 key stratigraphic units from onshore to offshore to delineate prospective offshore hydrocarbon-bearing units, and better understand the distribution of mafic igneous units that can compartmentalise migration pathways and influence heat flow. The offshore Canning Basin strata are poorly constrained in six wells with limited seismic coverage; hence data availability was bolstered by integrating data from the onshore portion of the basin and adjacent basins into a single 3D seismic stratigraphic model. This model integrates over 10 000 km of historical 2D seismic data and 23 exploration wells to allow mapping of key stratal surfaces. Mapped seismic horizons were used to construct isochores and regional cross-sections. Seven of the 13 units were mapped offshore for the first time, revealing that the onshore and offshore stratigraphy are similar, albeit with some minor differences, and mafic igneous units are more interconnected than previously documented whereby they may constitute a mafic magmatic province. These basin-scale maps provide a framework for future research and resource exploration in the Canning Basin. To better understand the basin’s geological evolution, tectonic history and petroleum prospectivity, additional well data are needed in the offshore Canning Basin where Ordovician strata have yet to be sampled.</div><div><br></div><div>C. T. G. Yule, J. Daniell, D. S. Edwards, N. Rollet & E. M. Roberts&nbsp;(2023).&nbsp;Reconciling the onshore/offshore stratigraphy of the Canning Basin and implications for petroleum prospectivity,&nbsp;Australian Journal of Earth Sciences,&nbsp;DOI:&nbsp;10.1080/08120099.2023.2194945</div> Appeared in Australian Journal of Earth Sciences Pages 691-715, Volume 70, 2023 - Issue 5.