NMR
Type of resources
Keywords
Publication year
Service types
Topics
-
Water content and NMR relaxation times are the most important properties estimated from surface nuclear magnetic resonance (SNMR) data. These properties are estimated during the geophysical inversion of SNMR data. These data were acquired as part of the Exploring for the Future (EFTF) program at field sites within the East Kimberley and Southern Stuart Corridor field areas.
-
This report presents key results from hydrogeological investigations at Alice Springs, completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Southern Stuart Corridor (SSC) project area within the Northern Territory extends in a north–south corridor from Tennant Creek to Alice Springs, encompassing four water control districts and a number of remote communities. Water allocation planning and agricultural expansion in the SSC is currently limited by a paucity of data and information regarding the volume and extent of groundwater resources and groundwater systems more generally. This includes recharge rates, surface water –groundwater connectivity, and the dependency of ecosystems on groundwater. Outside the proposed agricultural areas, the project includes numerous remote communities where there is a need to secure water supplies. Geoscience Australia, in partnership with the Northern Territory Department of Environment and Natural Resources and the Power and Water Corporation, undertook an extensive program of hydrogeological investigations between 2017 and 2019. Data acquisition included helicopter airborne electromagnetic (AEM) and magnetic data, investigative groundwater bore drilling, ground-based and downhole geophysical data (including nuclear magnetic resonance for mapping water content and induction conductivity/gamma for defining geological formations), and hydrochemistry for characterising groundwater systems. This report investigates the hydrogeology across the Alice Springs focus area, which includes the Roe Creek and proposed Rocky Hill borefields, where five hydrostratigraphic units were mapped based on AEM interpretation and borehole geophysical information. The mapping supports the presence of a syncline, with a gentle parabolic fold axis that plunges westward, and demonstrates that the main Siluro-Devonian Mereenie Sandstone and Ordovician Pacoota Sandstone aquifers are continuous from Roe Creek borefield to the Rocky Hill area. Areas with the highest potential for recharge to the Paleozoic strata are where Roe Creek or the Todd River directly overlie shallow subcrop of the aquifer units. Three potential recharge areas are identified: (1) Roe Creek borefield, (2) a 3 km stretch of Roe Creek immediately west of the proposed Rocky Hill borefield, and (3) the viticulture block to the east of Rocky Hill. Analysis of groundwater chemistry and regional hydrology suggests that the rainfall threshold for recharge of the Paleozoic aquifers is ~125 mm/month, and groundwater isotope data indicate that recharge occurs rapidly. The groundwaters have similar major ion chemistry, reflecting similar geology and suggesting that all of the Paleozoic aquifers in the focus area are connected to some degree. Groundwater extraction at Roe Creek borefield since the 1960s has led to the development of a cone of depression and a groundwater divide, which has gradually moved eastward and is now east of the proposed Rocky Hill borefield. The majority of the groundwater within the focus area is of good quality, with <1000 mg/L total dissolved salts (TDS). The brackish water (7000 mg/L TDS) further to the east of the proposed Rocky Hill borefield warrants further investigation to determine the potential risk of it being captured by the cone of depression following the development of this borefield. This study provides new insight to the hydrogeological understanding of the Alice Springs focus area. Specifically, this investigation demonstrates that the Roe Creek and proposed Rocky Hill borefields, and a nearby viticulture area are all extracting from the same aquifer system. This finding will inform the future management and security of the Alice Springs community water supply. New groundwater resource estimates and a water level monitoring scheme can be developed to support the management of this vital groundwater resource.
-
This OGC WFS web service (generated by Geoserver) serves data from the Geoscience Australia Rock Properties database. The database stores the results of measurements of physical properties of rock and regolith specimens, including such properties as mass density, magnetic susceptibility, magnetic remanence and electrical conductivity. The database also records analytical process information such as method and instrument details where possible.
-
This OGC WMS web service (generated by Geoserver) serves data from the Geoscience Australia Rock Properties database. The database stores the results of measurements of physical properties of rock and regolith specimens, including such properties as mass density, magnetic susceptibility, magnetic remanence and electrical conductivity. The database also records analytical process information such as method and instrument details where possible.