From 1 - 10 / 14
  • The Australian Bathymetry and Topography web service includes the topography of Australia and the bathymetry of the adjoining Australian Exclusive Economic Zone. The area selected does not include data from Australia's marine jurisdiction offshore from the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. The 2009 bathymetry data were compiled by Geoscience Australia from multibeam and single beam data, and along with the topography (onshore) data, was derived from multiple sources. As per the 2005 grid, the 0.0025 dd resolution is only supported where direct bathymetric observations are sufficiently dense (e.g. where swath bathymetry data or digitised chart data exist) (Webster and Petkovic, 2005). In areas where no sounding data are available (in waters off the Australian shelf), the grid is based on the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO (Amante and Eakins, 2008) satellite derived bathymetry. The topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008).

  • The Australian Submarine Canyons service identifies the location of 753 submarine canyons surrounding mainland Australia and its external territories, with associated metrics.

  • The Australian Submarine Canyons service identifies the location of 753 submarine canyons surrounding mainland Australia and its external territories, with associated metrics.

  • Chapter 13 "Bathymetry" was provided by Kim Picard for Volume 3B of the 'Earth Observation Series' published by Australia and New Zealand CRC for Spatial Information. The final volume introduces the Australian environment in terms of geography, climate, biota, and resource management, then covers a broad range of application areas reliant on EO data. Specific case studies are included to demonstrate individual applications. Source - https://www.eoa.org.au/earth-observation-textbooks Recommended Chapter Citation: PIcard, K., Anstee, J.M., and Harrison, B.A. (2021). Bathymetry. Ch 13 in Earth Observation: Data, Processing and Applications. Volume 3B—Surface Waters. CRCSI, Melbourne. pp. 223–241. ISBN 978-0-6482278-5-4 Recommended Citation for Volume 3B: CRCSI (2020). Earth Observation: Data, Processing and Applications. Volume 3B: Applications—Surface Waters. (Eds. Harrison, B.A., Anstee, J.M., Dekker, A.G., King, E.A., Griffin, D.A., Mueller, N., Phinn, S.R., Kovacs, E., and Byrne, G.) CRCSI, Melbourne.

  • The Australian Submarine Canyons service identifies the location of 753 submarine canyons surrounding mainland Australia and its external territories, with associated metrics.

  • The Australian Bathymetry and Topography web service includes the topography of Australia and the bathymetry of the adjoining Australian Exclusive Economic Zone. The area selected does not include data from Australia's marine jurisdiction offshore from the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. The 2009 bathymetry data were compiled by Geoscience Australia from multibeam and single beam data, and along with the topography (onshore) data, was derived from multiple sources. As per the 2005 grid, the 0.0025 dd resolution is only supported where direct bathymetric observations are sufficiently dense (e.g. where swath bathymetry data or digitised chart data exist) (Webster and Petkovic, 2005). In areas where no sounding data are available (in waters off the Australian shelf), the grid is based on the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO (Amante and Eakins, 2008) satellite derived bathymetry. The topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008).

  • The Australian Bathymetry and Topography web service includes the topography of Australia and the bathymetry of the adjoining Australian Exclusive Economic Zone. The area selected does not include data from Australia's marine jurisdiction offshore from the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. The 2009 bathymetry data were compiled by Geoscience Australia from multibeam and single beam data, and along with the topography (onshore) data, was derived from multiple sources. As per the 2005 grid, the 0.0025 dd resolution is only supported where direct bathymetric observations are sufficiently dense (e.g. where swath bathymetry data or digitised chart data exist) (Webster and Petkovic, 2005). In areas where no sounding data are available (in waters off the Australian shelf), the grid is based on the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO (Amante and Eakins, 2008) satellite derived bathymetry. The topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008).

  • This data represents a dimensionless ecological disturbance index, as the ratio of ecological succession and disturbance recurrence interval times the fraction of the area disturbed in any event. Small values of the ecological disturbance index represent decreasing proportions of time when disturbed/recovering habitats are present.

  • This data represents the integrated Shields (Shields, 1936) parameter exceeding 0.25 divided by the integrated total Shields parameter. The Shields parameter (non-dimensional bed shear stress) value of 0.25 is assumed to be the threshold for creating disturbed patches. This value is several times larger than that required to initiate traction bedload transport (~0.05) and falls in the middle of the ripple and dune bedform stability field. It represents conditions when the seabed is highly mobile and where patches of disturbed habitat are likely to be created. Shields, A. 1936. Application of similarity principles and turbulence research to bed-load movement. Mitteilunger der Preussischen Versuchsanstalt f¨ur Wasserbau und Schiffbau 26: 5-24

  • Australia’s marine jurisdiction covers over 10 million square kilometres, and we estimate that only 25% of its seafloor has been mapped to the adequate resolution required to support the sustainable development and management of our marine estate. Considering that seabed mapping underpins most aspects of ocean sciences and engineering, and contributes strongly to Australia’s economic, environmental and social values, it is critical that we address this fundamental knowledge gap. AusSeabed was founded three years ago—a cross sector collaborative national program aimed at coordinating ocean mapping efforts to maximise benefits to stakeholders. AusSeabed is working to address many challenges surrounding efficient data acquisition, quality assurance, processing and delivery to various end-users with an aim to eliminate duplication of effort and improve data quality and consistency across sectors. A fundamental component of the AusSeabed program is the design and development of a federated, cloud-based, open-source platform to address the whole supply chain from data acquisition to delivery. Importantly, this work is enabling seamless collation of seabed mapping datasets and their integration with other marine data types from a variety of previously isolated and inaccessible holdings. Strong community commitment and a powerful resonance with stakeholders have driven rapid program growth and are a testament to the value of deliberate and effective collaboration for national benefit. This presentation will give an overview of AusSeabed’s current progress, highlights and forward plan.