From 1 - 10 / 624
  • Effective management of the global ocean requires an inventory of its features and marine living and non-living resources. To help meet this need, a new global seafloor geomorphic features map (GSFM) has been created based on the analysis and interpretation of the Shuttle Radar Topography Mission (SRTM) 30 arc-second (~1 km) bathymetry grid. The new digital GSFM includes 131,190 separate polygons in 29 geomorphic feature categories. We present the first comprehensive identification, enumeration, inventory and quantitative analysis of the ocean's seafloor geomorphic features. The GSFM allows a more accurate assessment of features (proxies for benthic habitats, ecosystems and resources). GIS analysis of the GSFM illustrates that more than 50% of the area of 11 feature categories are located beyond the area of national jurisdiction, and less than 10% of 21 feature categories are protected in marine reserves globally, including shelf valleys, submarine canyons, mid-ocean spreading ridges and rift valleys.

  • A 2-D crustal velocity model has been derived from a 1997 364 km north-south wide-angle seismic profile that passed from Ordovician volcanic and volcaniclastic rocks (Molong Volcanic Belt of the Macquarie Arc) in the north, across the Lachlan Transverse Zone into Ordovician turbidites and Early Devonian intrusive granitoids in the south. The Lachlan Transverse Zone is a proposed west-northwest to east-southeast structural feature in the Eastern Lachlan Orogen and is considered to be a possible early lithospheric feature controlling structural evolution in eastern Australia; its true nature, however, is still contentious. The velocity model highlights significant north to south lateral variations in subsurface crustal architecture in the upper and middle crust. In particular, a higher P-wave velocity (6.24-6.32 km/s) layer identified as metamorphosed arc rocks (sensu lato) in the upper crust under the arc at 5-15 km depth is juxtaposed against Ordovician craton-derived turbidites by an inferred south-dipping fault that marks the southern boundary of the Lachlan Transverse Zone. Near-surface P-wave velocities in the Lachlan Transverse Zone are markedly less than those along other parts of the profile and some of these may be attributed to mid-Miocene volcanic centres. In the middle and lower crust there are poorly defined velocity features that we infer to be related to the Lachlan Transverse Zone. The Moho depth increases from 37 km in the north to 47 km in the south, above an underlying upper mantle with a P-wave velocity of 8.19 km/s. Comparison with velocity layers in the Proterozoic Broken Hill Block supports the inferred presence of Cambrian oceanic mafic volcanics (or an accreted mafic volcanic terrane) as substrate to this part of the Eastern Lachlan Orogen. Overall, the seismic data indicate significant differences in crustal architecture between the northern and southern parts of the profile. The crustal-scale P-wave velocity differences are attributed to the different early crustal evolution processes north and south of the Lachlan Transverse Zone.

  • Sub-sampling is a commonly used technique to reduce the amount of time and effort for investigating biological specimens of, especially, a large quantity. However, it is not immediately clear how sub-sampling may affect the estimates of biodiversity measures such as species presence/absence, richness and abundance by using such sub-sampled data. This article quantifies the effect of sub-sampling as attenuation of the species abundance distribution. Its theoretical description is derived by accounting for the random sampling scheme of finite populations and is illustrated using sub-sampled data collected by a marine survey. It shows the theory and data are in agreement. Our method can be used to set benchmarks for sub-sampling schemes since the departure from this model estimates the unexpected bias peculiar to the sub-sampling scheme adopted. This quantification also enables the effect of sub-sampling to be incorporated into further model development for biodiversity estimates.

  • Marine physical and geochemical data can be valuable in predicting the potential distributions and assemblages of marine species, acting as surrogate measures of biodiversity. The results of surrogacy analysis can also be useful for identifying ecological processes that link physical environmental attributes to the distribution of seabed biota. This paper reports the results of a surrogacy study in Jervis Bay, a shallow-water, sandy marine embayment in south-eastern Australia. A wide range of high-resolution co-located physical and biological data were employed, including multibeam bathymetry and backscatter data and their derivatives, parameters that describe seabed sediment and water column physical characteristics, seabed exposure, and infauna species. The study applied three decision tree models and a robust model selection process. The results show that the model performance for three diversity indices and seven out of eight infauna species range from acceptable to good. Important surrogates for infauna diversity and species distributions within the mapped area are broad-scale habitat type, seabed exposure, sediment nutrient status, and seabed rugosity and heterogeneity. The results demonstrate that abiotic environmental parameters of a sandy embayment can be used to effectively predict infauna species distributions and biodiversity patterns. International Journal of Geographical Information Science

  • An igneous zircon reference material (OG1) was characterised for U-Pb isotopes by ID-TIMS, and utilised to evaluate SIMS (SHRIMP) instrumental mass fractionation (IMF) of radiogenic Pb isotopes (207Pb*/206Pb*). The TIMS 207Pb*/206Pb* reference value for OG1 was 0.29907 ± 0.00011 (95% confidence limit), 3465.4 ± 0.6 Ma. The high 207Pb* (~ 30 -g g-1), negligible common Pb, and isotopic homogeneity permitted precise (± 1-2) 207Pb*/206Pb* measurements within the analytical sessions. External reproducibility of mean 207Pb*/206Pb* ratios between sessions was demonstrated for one instrument, yielding a mean IMF of +0.87 ± 0.49. The mean 207Pb*/206Pb* ratios between instruments were dispersed beyond uncertainties, with session IMF values from +3.6 ± 1.7- to -2.4 ± 1.3, and a grand mean IMF value (twenty-six sessions) of +0.70 ± 0.52, indicating a tendency towards elevated 207Pb*/206Pb*. The specific causes of variability in IMF are unclear, but generally reflect subtle differences in analytical conditions. The common practice in SIMS of assuming that IMF for Pb+ is insignificant could result in systematic age biases and underestimated uncertainties, of critical importance for precise correlation of Precambrian events. Nevertheless, a zircon RM such as OG1 can be readily incorporated into routine dating to improve 207Pb*/206Pb* accuracy and external reproducibility.

  • The Archean Pilbara granitoid-greenstone terrane (GGT) has been the focus of numerous studies on Archaean geology, especially the classic dome-and-basin area around Marble Bar in the east Pilbara. This area has been used as evidence for different tectonic processes, i.e. that vertical tectonics or diapirism was a cause for Archean deformation. This paper provides evidence to support regional horizontal (plate-interaction) stresses as being largely responsible for the compressive deformation of the Pilbara GGT, at least from ca. 3.2 Ga. The relative chronology of meso-to macro-scale structural elements are presented for a number of selected areas across the Pilbara GGT. These locally identified events are correlated with a regional (Pilbara-wide) structural framework of deformation events that are constrained by geochronological and stratigraphic controls. The dome-and-basin geometry characteristic of the east Pilbara was established after 3.2 Ga, and was successively modified by repeated orthogonal extensional and compressive (subhorizontal) events. The result has been a locally complex development of polyphase structural elements with consistent overprinting relationships that can be correlated across much of the Pilbara from 3.2 Ga. Diapirism did not cause these deformation elements, although it may have modified them.

  • A seismic structure imaged in a single 2D seismic profile from the offshore Canning Basin, Western Australia, is interpreted to be a possible complex impact crater on the basis of its seismic character. The feature, herein referred to as the Haines Structure, is symmetrical in two dimensions over ~2.5 km and comprises a centrally uplifted basal surface, a depressed upper surface, a highly deformed intervening package and an overlying horizon that is `sagging' over the depression. The possible impact structure lies within carbonate units of Eocene or Early Oligocene age as determined from seismic correlation to petroleum exploration wells. The structure has not been drilled; therefore distinguishing characteristics used to define an impact origin, such as shock metamorphism, are not available. Comparison with other features in the Neogene succession of Australia's North West Shelf that have previously been interpreted as impact structures highlights the presence of key elements in the Haines Structure that characterise known complex impact craters, and the absence of seismic features related to alternative processes, such as a link to deeper structures that would be expected beneath a volcanic pipe.

  • In this study detailed mapping of seismic data from the 1529 km2 Beagle multi-client 3D seismic survey was undertaken to provide a better understanding of the geological history of the central Beagle Sub-basin. Situated in the Northern Carnarvon Basin, oil discovered at Nebo 1 in 1993 indicated the presence of at least one active petroleum system. The central part of the sub-basin has a N-trending horst-graben architecture. Two rifting events from the Hettangian to Sinemurian and the Callovian to Oxfordian were identified. A series of tilted fault blocks formed by the rifting events were locally eroded and progressively draped and buried by post-rift thermal subsidence sedimentation. Mapping indicated the Post-rift I Lower Cretaceous Muderong Shale regional seal is anomalously thin or absent in the intra-horst graben area. Burial history 1D modelling indicates that at Nebo 1, the most rospective potential source rocks within the Middle-Upper Jurassic section where in the early oil window; however, if present within the Beagle and Cossigny trough depocentres, these sediments would have entered the oil window prior to the deposition of the Muderong Shale regional seal. Upper Jurassic shales provide seal for the oil pool intersected in Nebo 1. The Tertiary section is dominated by a prograding carbonate wedge which has driven a second phase of thermal maturation observed in the Paleogene (Nebo 1) and Miocene (Manaslu 1). Potential source rocks are currently at their maximum depth of burial and maximum thermal maturity. Modest inversion on some faults prior to the Early Cretaceous has created traps and if source rocks retain generative potential, favourable traps could be now actively receiving hydrocarbon charge. Potential plays include compaction folds over tilted horst blocks, drape and small inversion induced anticlines, basin-floor fans and intra-formational traps. Deep faults may act as conduits for hydrocarbons migrating from mature potential source rocks into Jurassic to Cretaceous plays. Younger sediments appear to lack access to migration pathways provided by deeper faults.

  • The Ord is one of the largest rivers in northern Australia and is located in the Kimberley region of Western Australia. In this study we show that the lower Ord landscape near Kununurra in Western Australia consists of a large scale ancient landscape, possibly pre-Cambrian, being exhumed from beneath flat-lying Cambrian to Carboniferous cover rocks. Additional post-Permian landscapes are being formed by this process. The Ord Valley alluvium is of late Pleistocene to Holocene in age and consts off upward fining gravels, sands and clays infilling an inset valley profile. The Ord River initially flowed to the sea via the keep River estuary, however a major avulsion, possibly due to sedimentatain topping a low point in the surrounding valley walls, occurred possibly as recently as 1,800 years ago. As a result to mouth of the Ord shifted some 100 km to the east, to Cambridge Gulf, its course through the former alluvial plain and along the new course across the coastal plain was incised, and a scabland formed across the low point of Tararar Bar. This association of very ancient (pre-Paleozoic) landscape elements and by thin, very young weathering profiles and young sedimentary accumulations in alluvial valleys is paradoxical in the broader Australian pattern where very ancient landscape elements are associated with ancient sedimentary infill and weathering profiles.

  • The Queen Charlotte Fault (QCF) off western Canada is the northern equivalent to the San Andreas Pacific - America boundary. Geomorphology and surface processes associated with the QCF system have been revealed in unprecedented detail by recent seabed mapping surveys. The QCF bisects the continental shelf of British Columbia forming a fault-valley that is visible in multibeam sonar bathymetry data. The occurrence of the fault within a valley, and its association with what appear to be graben structures, suggest the fault may exhibit minor rifting (extension) as well as strike-slip motions in the region offshore from Haida Gwaii (Queen Charlotte Islands). Fault-valley formation, slumping and stranding of submarine canyon thalwegs are geomorphic expressions of QCF tectonism, illustrating the general applications of multibeam technology to marine geophysical research.