From 1 - 10 / 184
  • The Capel and Faust basins are located in a frontier part of offshore eastern Australia, about 800 km east of Brisbane in 1300-2500 m of water. Little is known of the basin structures and geological history of this area, which is a continental fragment separated from Australia during the Cretaceous rifting of the Tasman Sea. In 2007 Geoscience Australia acquired 6000km of 2D seismic reflection and refraction data, gravity and magnetics, to begin an assessment of the petroleum prospectivity of these basins. A workflow has been developed to assist the seismic interpreter with feedback from a coherent 3D geology model that is used to predict the gravity response of the basins. This response is harmonized with the observed gravity and modified geological horizons are then returned to the seismic interpreter. An interface between Geoframe and Geomodeller has been optimized to make it very easy to do many iterations of this process, as suits the changing needs of the interpretation team.

  • Presented at the Evolution and metallogenesis of the North Australian Craton Conference, 20-22 June 2006, Alice Springs. The Nolan's Bore LREE/P/U deposit is located at 133° 14' 15"E ,22° 34' 40"S , approximately 135 km NNW of Alice Springs. The deposit was initially located in 1994 by PNC Exploration (Australia) Pty Ltd (Thevissen, 1995) and rediscovered by Arafura Resources NL in 1999 when the REE and phosphate potential of the deposit came to prominence. Current identified mineral resources (Indicated + Inferred, JORC compliant) stand at 18.6 Mt at 3.1% REO, 14% P2O5, and 0.021% U3O8 (Goulevitch, 2006). The deposit is open laterally and at depth. The bulk of the mineralisation is currently restricted to an area about 1500 m × 1100 m in extent, and this may increase if suspected continuity to other fluorapatite outcrops 500-600 m along strike to the SW is confirmed. A fluorapatite band located about one kilometre west of the main deposit does not appear to be linked at shallow depths to the main deposit as mineralisation is absent in the intervening area. <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&amp;catno=64764">Evolution and metallogenesis of the North Australian Craton Conference Abstracts</p>

  • This presentation was delivered at the 30th NZ Geothermal Workshop in Taupo, New Zealand (10 - 13th November 2008). It summarises the key initiatives the Australian Government and State Governments have in place to support the growth of Australia's young geothermal industry.

  • Presentation at the National Climate Change Adaptation Research Facility Conference in 2013 (Sydney). This presentation is based on the "Reforming Planning Processes Trial: Rockhampton 2050" report (GeoCat 75085) Potential impacts of climate change present significant challenges for land use planning, emergency management and risk mitigation across Australia. Even in current climate conditions, the Rockhampton Regional Council area is subject to the impacts of natural hazards, such as bushfires, floods, and tropical cyclones (extreme winds and storm surge). All of these hazards may worsen with climate change. To consider future climate hazard within council practices, the Rockhampton Regional Council received funding from the National Climate Change Adaptation Research Grants Program Project for a project under the Settlements and Infrastructure theme. This funding was provided to evaluate the ability of urban planning principles and practices to accommodate climate change and the uncertainty of climate change impacts. Within this project, the Rockhampton Regional Council engaged Geoscience Australia to undertake the modelling of natural hazards under current and future climate conditions. Geoscience Australia's work, within the broader project, has utilised natural hazard modelling techniques to develop a series of spatial datasets describing hazards under current climate conditions and a future climate scenario. The following natural hazards were considered; tropical cyclone wind, bushfire, storm tide, coastal erosion and sea-level rise. This presentation provides an overview of the methodology and how the results of this work were presented to the Rockhampton Regional Council for planning consideration.

  • Presentation for Fire Weather and Risk Workshop. Busselton May 2013

  • Australian Landscapes are prone to fire, from the Northern Savanna to the southern forests of Tasmania. Although fire is natural and is a vital management tool, fires are also a hazard to people and assets across Australia. Sentinel is a national fire hotspots detection and mapping system operated by Geoscience Australia. Sentinel was developed collaboratively by Geoscience Australia and CSIRO and has been operating since 2003. Hotspots are detected using satellite-based sensors monitoring all of Australia up to four times each day. The information is freely available to end-users through a web-site, as data feeds and down-loads. Sentinel has detected over 4 million hot-spots so far. In 2014 Geoscience Australia re-developed Sentinel including: - A more robust and maintainable 'backend' system, enabling quick and easy ingestion of new sources of hotspot data and fire related products - Improved user interface for the visualization of current hotspots and download of archived hotspots data - Separate access for emergency management users to ensure reliable access to hotspots data during major events - Improved interoperability, through reconsideration of the attributes used to describe a hotspot, anticipating the need for a standard approach to this problem