From 1 - 7 / 7
  • This report presents groundwater level information collected during Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project was conducted as part of Exploring for the Future (EFTF), an Australian Government funded geoscience data and information acquisition program. The eight-year, $225 million program aims to deliver new geoscience data and knowledge to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources.</div><div>Groundwater level data was collected during two hydrogeochemical surveys undertaken in March and May 2023 based around the remote communities of Warburton, Kaltukatjara, Wanarn, Blackstone and Jameson in Western Australia and the Northern Territory. Sixteen bores were measured for their groundwater levels. The results are contained herein and within the attached CSV file.

  • This report was compiled and written to summarise the four-year Palaeovalley Groundwater Project which was led by Geoscience Australia from 2008 to 2012. This project was funded by the National Water Commission's Raising National Water Standards Program, and was supported through collaboration with jurisdictional governments in Western Australia, South Australia and the Northern Territory. The summary report was published under the National Water Commission's 'Waterlines' series. This document is supported by related publications such as the palaeovalley groundwater literature review, the WASANT Palaeovalley Map and associated datasets, and four stand-alone GA Records that outline the detailed work undertaken at several palaeovalley demonstration sites in WA, SA and the NT. Palaeovalley aquifers are relied upon in outback Australia by many groundwater users and help underpin the economic, social and environmental fabric of this vast region. ‘Water for Australia’s arid zone – Identifying and assessing Australia’s palaeovalley groundwater resources’ (the Palaeovalley Groundwater Project) investigated palaeovalleys across arid and semi-arid parts of Western Australia (WA), South Australia (SA) and the Northern Territory (NT). The project aimed to (a) generate new information about palaeovalley aquifers, (b) improve our understanding of palaeovalley groundwater resources, and (c) evaluate methods available to identify and assess these systems.

  • <div>Diamond exploration over the past decade has led to the discovery of a new province of kimberlitic pipes (the Webb Province) in the Gibson Desert of central Australia. The Webb pipes comprise sparse macrocrystic olivine set in a groundmass of olivine, phlogopite, perovskite, spinel, clinopyroxene, titanian-andradite and carbonate. The pipes resemble ultramafic lamprophyres (notably aillikites) in their mineralogy, major and minor oxide chemistry, and initial 87Sr/ 86Sr and <em>ε</em>Nd-<em>ε</em>Hf isotopic compositions. Ion probe U-Pb geochronology on perovskite (806 ± 22 Ma) indicates the eruption of the pipes was co-eval with plume-related magmatism within central Australia (Willouran-Gairdner Volcanic Event) associated with the opening of the Centralian Superbasin and Rodinia supercontinent break-up. The equilibration pressure and temperature of mantle-derived garnet and chromian (Cr) diopside xenocrysts range between 17 and 40 kbar and 750–1320°C and define a paleo-lithospheric thickness of 140 ± 10 km. Chemical variations of xenocrysts define litho-chemical horizons within the shallow, middle, and deep sub-continental lithospheric mantle (SCLM). The shallow SCLM (50–70 km), which includes garnet-spinel and spinel lherzolite, contains Cr diopside with weakly refertilized rare earth element compositions and unenriched compositions. The mid-lithosphere (70–85 km) has lower modal abundances of Cr diopside. This layer corresponds to a seismic mid-lithosphere discontinuity interpreted as pargasite-bearing lherzolite. The deep SCLM (&gt;90 km) comprises refertilized garnet lherzolite that was metasomatized by a silicate-carbonatite melt.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z. J., et al. (2023). Petrology, age, and rift origin of ultramafic lamprophyres (aillikites) at Mount Webb, a new alkaline province in Central Australia. <i>Geochemistry, Geophysics, Geosystems</i>, 24, e2023GC011120.</div><div>https://doi.org/10.1029/2023GC011120</div>

  • The product consists of 8,800 line kilometres of time‐domain airborne electromagnetic (AEM) geophysical data acquired over the far north part of South Australia known as the Musgrave Province. This product release includes: a) the measured AEM point located data, b) electrical conductivity depth images derived from the dataset, and c) the acquisition and processing report. The data were acquired using the airborne SkyTEM312 Dual Moment 275Hz/25Hz electromagnetic and magnetic system, which covered a survey area of ~14,000 km2, which includes the standard 1:250 000 map sheets of SG52-12 (Woodroffe), SG52-16 (Lindsay), SG53-09 (Alberga) and SG53-13 (Everard). The survey lines where oriented N-S and flown at 2km, 500m and 250m line spacing. A locality diagram for the survey is shown in Figure 1. This survey was funded by the Government of South Australia, as part of the Plan for Accelerating Exploration (PACE) Copper Initiative, through the Department of the Premier and Cabinet, (DPC) and the Goyder Institute of Water Research. Geoscience Australia managed the survey as part of a National Collaborative Framework project agreement with SA. The principal objective of this project was to capture a baseline geoscientific dataset to provide further information on the geological context and setting of the area for mineral systems as well as potential for groundwater resources, of the central part of the South Australian Musgrave Province. Geoscience Australia contracted SkyTEM (Australia) Pty. Ltd. to acquire SkyTEM312 electromagnetic data, between September and October 2016. The data were processed and inverted by SkyTEM using the AarhusInv inversion program (Auken et al., 2015) and the Aarhus Workbench Laterally Constrained Inversion (LCI) algorithm (Auken et al. 2005; Auken et al. 2002). The LCI code was run in multi-layer, smooth-model mode. In this mode the layer thicknesses are kept fixed and the data are inverted only for the resistivity of each layer. For this survey a 30 layer model was used. The thickness of the topmost layer was set to 2 m and the depth to the top of the bottommost (half-space) layer was set to 600 m. The layer thicknesses increase logarithmically with depth. The thicknesses and depths to the top of each layer are given in Table 1. The regional AEM survey data can be used to inform the distribution of cover sequences, and at a reconnaissance scale, trends in regolith thickness and variability, variations in bedrock conductivity, and conductivity values of key bedrock (lithology related) conductive units under cover. The data will also assist in assessing groundwater resource potential and the extent of palaeovalley systems known to exist in the Musgrave Province. A considerable area of the survey data has a small amplitude response due to resistive ground. It very soon becomes evident that lack of signal translates to erratic non-monotonic decays, quite opposite to the smooth transitional exponential decays that occur in conductive ground. Some sections of the data have been flown over what appears to be chargeable ground, hence contain what potentially can be identified as an Induced Polarization effect (airborne IP—AIP). For decades these decay sign changes, which characterize AIP, have not been accounted for in conventional AEM data processing and modelling (Viezzoli et al., 2017). Instead they have mostly been regarded as noise, calibration or levelling issues and are dealt with by smoothing, culling or applying DC shifts to the data. Not accounting for these effects is notable on the contractor’s conductivity-depth sections, where data can’t be modelled to fit the data hence large areas of blank-space have been used to substitute the conductivity structure. The selection of the survey area was undertaken through a consultative process involving the CSIRO, GOYDER Institute, Geological Survey of South Australia and the exploration companies currently active in the region (including industry survey partner PepinNini Minerals Ltd). The data will be available from Geoscience Australia’s web site free of charge. It will also be available through the South Australian Government’s SARIG website at https://map.sarig.sa.gov.au. The data will feed into the precompetitive exploration workflow developed and executed by the Geological Survey of South Australia (GSSA) and inform a new suite of value-added products directed at the exploration community.

  • <div>This report details results and methodology from two hydrochemistry sampling programs performed as part of Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project is a data acquisition and scientific investigation program based around the central west of Australia. It is aimed at investigating groundwater processes and resources within the Cenozoic fill and palaeovalleys of the region. This project, and many others, have been performed as part of the Exploring for the Future (EFTF) program, an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program.</div><div>Data released here is from 18 bores sampled for groundwater and tested for a range of analytes including field parameters, major and minor elements, isotopes and trace gases. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report.</div>

  • This Record presents data collected in March 2021 as part of the ongoing Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) SHRIMP geochronology project under the National Collaborative Framework (NCF) agreement and Geoscience Australia's Exploring for the Future Program. New U–Pb SHRIMP zircon geochronological results derived from two drillhole samples of igneous and meta-igneous material from basement to the Amadeus Basin in the Northern Territory are presented herein. <b>Bibliographic Reference:</b> Kositcin N, Verdel C and Edgoose CJ, 2022. Summary of results. Joint NTGS–GA geochronology project: Crystalline basement intersected by the Mount Kitty 1 and Magee 1 drillholes south of Alice Springs, March 2021. <i>Northern Territory Geological Survey</i>, <b>Record 2022-002</b>.

  • <div>AusAEM Western Resources Corridor Survey: Logistics Report, AEM Data, and GALEI conductivity estimates.</div><div><br></div><div>From&nbsp;May to October 2022, an airborne electromagnetic (AEM) survey was flown over parts of Western Australia, Northern Territory and South Australia. Geoscience Australia commissioned the survey in collaboration with the Geological Surveys of Western Australia (GSWA) and South Australia (GSSA)&nbsp;as part of the Australian Government's Exploring for the Future program and the Western Australian Government's Exploration Incentive Scheme.</div><div><br></div><div>A total of 58,858 line kilometres of new data were acquired. GA managed all aspects of the acquisition, quality control and processing of the AEM data.</div><div><br></div><div>The survey was flown by Xcalibur Aviation (Australia)&nbsp;Pty Ltd using its TEMPEST AEM system. The survey was flown in variable line directions and line spacings ranging from 20km to&nbsp;5km apart. Skytem Australia Pty Ltd also processed the data. This data package includes the acquisition and processing report, the final processed AEM data, and the results of the contractor's conductivity-depth estimates. The data package also contains the results and derived products from a 1D inversion by Geoscience Australia with its own inversion software.</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides pre-competitive information to inform decision-making by Government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. We are building a national picture of Australia's geology and resource potential by gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight-year, $225m investment by the Australian Government.</div><div><br></div><div>The survey will become part of the national AusAEM airborne electromagnetic acquisition program, which aims to provide geophysical information to support investigations of the regional geology and groundwater system and better characterise the salinity, recharge and architecture of the aquifers within the upper few hundred metres of the subsurface. It will also provide data to allow for the study of trends in regolith thickness and variability, variations in bedrock conductivity, the conductivity of key bedrock (lithology-related) conductive units under cover; and (d) the groundwater systems of the region at a reconnaissance scale.</div>